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Abstract

A novel method of target detection based on a multiple resolution represen-
tation of SAR images is described. The signature variation due to interference
between scatterers is exploited as resolution is varied. Prominent target scat-
terers interfere in a characteristic manner as resolution is changed; background
noise (clutter) will remain random. Statistical models characterizing the be-
havior of the multiresolution signature processes for both clutter and cultural
objects are derived. A number of detection strategies that exploit these pro-
cesses are formulated. The detection strategies were applied to simulated SAR
scenes containing extended, complex targets in a homogeneous clutter back-
ground. Significant detection improvement was demonstrated over pixel-by-
pixel CFAR methods using only the fine resolution signature. These detection
strategies were also applied to collected ERIM DCS and Lincoln Laboratory
ADTS data. We found that using multiresolution based detection strategies
provide a significant increase in detectability of targets.
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1 Introduction

In this report we describe a target detection concept which uses the change of the
complex-valued synthetic aperture radar (SAR) signature in a pixel when resolution
is varied. The conjecture is that there is a specific signature change between groups
of cultural scatterers which is different from the signature change in random clutter
" when resolution is varied. This change in signature is due to the interference of the
prominent scatterers as they contribute to the signature in the resolution cell. As
resolution changes, different target prominent scatterers enter/exit a resolution cell.
Clutter, on the other hand, will have large numbers of equivalued scatterers causing
it to remain random with respect to resolution.

Many synthetic aperture radar (SAR) target detection algorithms work on a sin-
gle resolution image at the finest available resolution [20], [21]. However, there is
compelling evidence to suggest that significant performance gains can be achieved by
casting the detection problem in a multiresolution setting. We argue, using simple
physical principles, that this performance gain is a direct result of the coherent inter-
ference effects that occur in typical radar target signatures as the imaging resolution
is varied. We then apply a multiresolution sampling strategy for choosing optimal
resolutions for coherent target detection.

SAR images of man-made objects typically consist of spatial patterns of bright
points and lines resulting from radar backscatter from discrete physical features such
as corners, edges, flat plates and other primitive geometric shapes. The coherent
radar return from each of these discrete features, or prominent scatlerers, is a com-
plex phasor with amplitude equal to the local radar cross-section of the target fea-
ture. At fine enough resolutions, these prominent scatterers are isolated in individual
resolution cells and they dominate the target signature. As the resolution changes
from fine to coarse, adjacent scatterers become lumped together into a single resolu-
tion cell and coherently interfere with each other, leading to characteristic changes

in amplitude and phase as a function of resolution. It is this relationship between




phase and amplitude as a function of resolution that we exploit through the use of a
multiresolution-based detector.

There are two potential benefits which can be gained from exploiting this discrim-
inant. The first benefit is that more reliable target detection (higher probability of
detection for a given false alarm rate) can be obtained. The second is that the re-
quired aperture for equivalent target detection performance to a non-multiresolution
case may be reduced and therefore, the system search rate is increased. These bene-
fits were empirically verified. An increase in detection probability of approximately a
factor of 2 was achieved for a given false alarm rate using multiresolution signatures.
In addition, the use of multiple resolutions attained an equivalent performance to a
pixel-by-pixel fine resolution approach without the need for the fine resolution data.

In our development of SAR imaging, we will assume linear FM transmission signals
and the usual far-field assumptions [2]. Neglecting polar formatting concerns (data
is assumed interpolated or backprojection processing is used) and higher order phase

effects (range walk and variable range rate), the complex image can be expressed in

ly?
Arg

terms of the scene, s(z), z € R?, as
]h (z — Q) dy )

Twp) = - [ [ | L) 4y

- %//c( )h("g_-"i) dy 2)

p
o[ 122
The quadratic phase term emr[""‘] arises as a result of retaining the second order

<

term in the binomial series expansion of the distance from the SAR antenna to a
specific point in the scene. This quadratic term incorporates the interference (phase
mixing) of the various scatterers within a resolution cell. This effect is usually ac-
counted for by defining a complex scene ¢(z). As resolution is varied the scatterer
interference will take on a unique characteristic determined by the strength and rel-
ative location of the scatterers within the resolution cell.

To obtain an intuitive understanding of the role that interference of prominent
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scatterers plays a simple example is now presented. The example is depicted at the
top of Figure 1. A set of 3 scatterers are equidistantly placed in azimuth. The scene

can then be written as

s(z) = Z oz — z;) (3)

=1

For an unweighted phase history, the complex image of this scene is

T(z; p) = Ze"’i'f« ( ) (4)

p

The magnitude and phase of this target signature for 1, 2, and 3 scatterers are shown
in the middle and bottom of Figure 1, respectively. These figures show the effect of
interference between the scatterers when they enter a resolution cell. In the case of
a single scatterer, no interference is present and no change in signature is detected
as a function of resolution. For 2 and 3 scatterers the signature changes significantly.
When each individual scatterer can be resolved, there is no interference between scat-
terers (neglecting effects from higher order sidelobes). As the resolution degrades,
the first order sidelobe has an effect on the signature of the scatterer. When the res-
olution becomes large enough to contain all of the scatterers, the change in signature
is most pronounced.

Natural terrain typically consists of a large collection of small amplitude scatterers
that are randomly distributed within each resolution cell. These random paths are
shown in Figure 2. Thus SAR imagery of terrain, i.e., clutter, is frequently modeled as
a Gaussian random field by appealing to the law of large numbers [23] and references
therein. The result is that the amplitude and phase of a clutter pixel vary randomly
as a function of resolution. In particular, for Gaussian clutter the amplitude has
a Rayleigh distribution with parameter proportional to the resolution and clutter
reflectivity, while the phase is uniformly distributed over [0, 2).

The resolutions where the multiresolution discriminant is applicable must be
coarse enough to allow multiple prominent scatterers in a resolution cell but not

so coarse that the law of large numbers can be applied for target signatures. As
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shown in [1], approximately 8 scatterers of equal value in a resolution cell is the limit
where the signature can be said to be nonrandom. The choice of resolutions in which
the multiresolution feature vector is constructed must be chosen appropriately.

A natural concern that arises when images of various resolutions are to be jointly
processed /analyzed is the correspondence of a pixel from image to image. This prob-
lem can be circumvented by choosing the maximum aperture extent (finest resolution)
a priori, sampling at a rate defined by the Nyquist rate at that resolution and retain-
ing that sampling rate as the resolution changes. The images at coarser resolutions
are effectively oversampled. Each pixel in each of the multiresolution images will now
have a direct correspondence with each other.

In section 2 we will develop the statistical multiresolution process models. This
section will also discuss a simple resolution sampling strategy which whitens the
multiresolution clutter process. Section 3 will discuss the detection strategies that
we will employ in our studies. The detection strategies will be based on a composite
hypothesis test which determines the presence of a mean value in the process. Special
cases encompassing a Generalized Likelihood Ratio (GLRT) approach will also be
discussed. A second resolution sampling strategy based on a generalized matched
filter is also developed and discussed in the appendicies. Section 4 discusses the
overall detection algorithm developed in the Strategic Target Algorithm Research
(STAR) [22] program where our detection strategies were inserted. Section 5 discusses
the performance results of our detection strategies when applied to simulated data.
Section 5 also discusses the detection results when the multiresolution based algorithm
was applied to the Lincoln Laboratories STAR data set and to ERIM DCS data. A set
of appendices are also given which review a multiresolution sampling strategy when
a generali;zed matched filter strategy is used and some prdperties of noisy wavelet

transforms.
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Figure 1: Top: Simple three-scatterer target example. Middle: Magnitude signature
of simple three-scatterer target as a function of resolution. Bottom: Phase signature

of simple three-scatterer target as a function of resolution.
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2 Multiresolution Process Statistics

In our construction, we model the scene c(z), z € R” as a collection of point scat-
terers, in which each point scatterer is specified by its location z; € R? and complex

reflectivity u;, € C:
K
Cc(z) = ) wd(z — zx)- (5)
k=1

This approach has been used to model both clutter [23, and references therein] and
objects that consist of collections of point reflectors [19, for instance] (i.e., trihedrals
or corner reflectors). We refer to ¢ as the complex reflectivity function.

The complex-valued SAR image, T'(z; p), taking into account resolution, can be
written as a convolution between the complex reflectivity function, ¢(z), and the

system impulse response, h(z), [2]:

rae) = & [ (S2)d

_ L5 un (-"5‘-"5’“). (6)

P k=1 p

If we model the locations {z;} as a Poisson point process with intensity A(z), then
¢(z) is a compound point process or marked Poisson process with marks {ux} [24,
Chapter 3]. T(z; p) forms a filtered Poisson process at each resolution p [24, Chapter
4]. |

In the next two subsections, we consider models for the statistics of the observed
radar image, T', under simple assumptions on the statistics of the scatterer locations

{z;} and their complex reflectivities {uy}.

2.1 Case 1: Natural Clutter

For natural terrain, i.e., clutter, a typical assumption is that each resolution cell in the
SAR image contains a large number of small amplitude scatterers. In this case, we will

assume that the complex reflectivities {ux} are independent, identically distributed
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(44d) random variables with mean zero and covariance o2l where [ is the identity

matrix.

Using a slight generalization of a result in [23], we can invoke the Generalized
Multivariate Central Limit Theorem [16] to show that the joint density of T'(z;p)
converges to multivariate Gaussian in both space and resolution as the number of
scatterers K tends to infinity. For a set of i¢d Circular Complex r.v. Xj,...,Xn, a

set of arbitrary weights aj1,...,a;n8 j=1,...,J where

ZaJka) NN(O 2) (7)

Z a1 X, - -
(\/ Yhet € k=1 \/ Ek— afy k=1

By assuming that the clutter scene ¢(z), z € R? consists of a set of random point
scatterers (c(z) = Y urd(z — z;)) with uy iid, zero mean and with covariance o721,
the summation of the scatterers within a resolution cell produces to complex gaussian
random variable. The weights described in equation 7 correspond to the impulse

response of the system.

The mean and covariance of the process are
E{T(z;p)} =0, (8)
and

X(z,z'5p,0") = R(z,z;p,0)
= E{T(z;p)T"(z';¢")} (9)

o2 (g - y’) (&' - y')
= —<[h = | b = | dy,
P’ P p Y

where R(z,z';p,p’) is the correlation function of T'(z; p), and o. is the variance of

the i¢d complex reflectivities {u;}. Note that the covariance function X is completely

specified by the variance o, and the impulse response h(z).




The choice of the impulse response h influences the statistics of the SAR image
T(z; p). This is especially true when examining T'(z; p) as a function of resolution.

For a specific spatial location z = 2’ = z; = 0, the covariance in resolution becomes

E:;(p,0) = (0,00,

2 — —
= Z h(—ﬁ) B (—,3) dy. (10)
e ) "\ p 0]

If the impulse response is chosen so that the correlation function R satisfies a
scaling law condition [5] with respect to resolution, then the process T'(z; p) is Gauss-

Markov in resolution. For p; < p < p,, the scaling law is

Ry, (p1, ) By, (0, pu)

where Ry (p1, pu) = R(z,,2,; p,p'). The scaling law as it pertains to the SAR impulse

response becomes
o) o 1 (_g) *(—y) <—yl) *(—y,) ’
h|—=|h"|—=]|dy= h|—=|h"|—=])dy [R|—=|h = | dy'.
/(m> (,,) ¢ ||h||2/ o b v/ pu )

where ||h|? = [ |k (2£) [*dy.

The simplest means of analyzing equation 11 is through the Fourier transform of

the system impulse response
hz) = [ H(peEDdf. (13)

The scaling law can now be written in terms of the aperture weighting as

/H(Pli)H*(PuI_)df _ J H(pli)H*(pi)dﬁ{[ﬁi(pf. -)H*(Pui )di (14)

For h(z) = rect(z) or H(f) = rect(f) and p < p', the correlation of the process
in resolution becomes
’ f .
Ry (p,0) = ¢ / H (p—— H*(f)df
p
= 4p'. (15)
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Figure 3: Pictoral representation of a rect aperture weighting showing that the scaling
law in correlation is satisfied.

A simple substitution of equation 15 into equation 11 shows that the scaling law is
satisfied when the system impulse response is either sinc(z) or rect(z) and the process
is Gauss-Markov. This is simply shown pictorally in Figure 3. The correlation of
T(z;; p) becomes Ry (p,p') = o?/maz{p,p'} with variance o* = o2/p.

T(z; p) can also be shown to have independent increments in resolution - i.e.

E{[T(z;; p1) — T(z;; p2)][T (23 p2) — T(zj303)]"} =0 (16)

for py > ps > ps, . In this case, the clutter process T'(z;;p) is a Brownian motion
process when viewed as a function of % [7].

The Brownian motion nature of T in resolution can be exploited to provide a
simple linear transformation of the process which whitens the process in resolution.
This transformation is based on the independent increments of the resolution process

and the scaling of the variance in resolution. Choose a set of resolutions p; < ... <
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pi < pis1 < ... < py where p;11 = p; + 8pi. An increments process in resolution is

formed by
T'(z;; p:) = T(zj; i + 0pi) — T(z5; p3) (17)

with dp; > 0. This process has zero mean and is independent from resolution to
resolution.

Furthermore, by judicious choice of resolutions {p;}, the variance of the difference
process T' can be made constant from resolution to resolution. We choose adjacent
resolutions to satisfy ;1‘- - 5—;1—1 = ~ for every i. Under this latter condition, the
resolution step size dp; can be easily shown to be

2
P;
§p; = — 18
1—9pi (18)
This resolution sampling strategy is shown in Figure 4 for two choices of . The reso-

lution sampling is dense at fine resolutions and becomes sparse at coarse resolutions.

For a fixed point z;, we define the vector of resolution increments
L'(z;) ={T'(z5;p),-- -, T'(z5 pn-1) ¥ (19)

where ¢ denotes vector transpose. Then I"(z;) has distribution I'(z;) ~ N.(0,v021)
where N(u, X) denotes a circular complex Gaussian density with mean p and complex
covariance X. Here the symbol ~ is shorthand notation for the phrase “has probability

distribution.” We also define the vector
T(z;) = {T(z;;p1),---, T(zj; pn)} (20)

which is a vector of samples from the original multiresolution process at the same set

of resolutions as the increments process.

Case 2: Statistics of Cultural Objects

Many man-made or cultural objects typically consist of a small number of large

amplitude point scatterers. In the case of our multiresolution analysis, the physical
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Change in resolution increment size vs. resolution

5 T L ) T ¥ ] i
Wavelet Sampling

Figure 4: Sampling strategy for the choice of resolutions to whiten the clutter incre-
ments process in resolution.
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phenomena we wish to explore is the interaction of a small number of local prominent
scatterers and the interference patterns that result. The number of local prominent
scatterers we wish to examine are typically less than eight. Larger numbers tend to
make the SAR signature exhibit zero mean complex Gaussian statistics [1].

We will reformulate the process to have a random and nonrandom component.
The point scatterer model will become

c(z) = I;uké(z—u) +kZ_:1ak5(£— ). (21)

The first term in Equation 21 will correspond to the clutter model as outlined in Case
1. The second term will correspond to an unknown set of prominent scatterers. The
complex reflectivities {a;} are deterministic but unknown. The spatial distribution
of the prominent scatterers is also assumed to be deterministic but unknown. T'(z; p)
will be multivariate Gaussian with covariance as in Case 1 (Eq. 10). The mean of

the process is

BTG = 1 S ok (222, (22)

In the same spirit as Case 1, we form a vector of increments in resolution, I"(z;).
This process is complex Gaussian with distribution I"(z;) ~ N.(, y02I) where p =

{.ula ceegMiye nu'N-—l}t and

. K' 1 (:z:-—:ck) 1 (w'—ick)]
i=E{T'(zj;p)}=)_a win) ) @
H {T(zjip:)} ,?4;1 k[Pi+5Pi pi+dpi) pi pi (23)
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3 Detection Strategies

The goal of our detection scheme is to construct simple pixel screening algorithms.
Our detection strategies will exploit information provided by resolution. This infor-
mation is, in fact, produced by the local spatial signature as it is incorporated into
the resolution process. We derive three classes of multiresolution tests. The first
class is the Generalized Likelihood ratio test (GLRT). This test exploits the oscilla-
tory behavior of the multiresolution signature due to interference between scatterers.
We use an autoregressive (AR) signal model to characerize the oscillatory behavior.
We derive the general multiresolution GLRT using these signal models and a set of
simplified tests based on special cases of the models. The second class of tests is
composite hypothesis tests whose purpose is to detect differences in the mean value
of the multiresolution process. As shown in Section 2, when faced with a determin-
istic but unknown set of scatterers (cultural object), there is a mean value on the
multiresolution process whereas clutter will be a zero mean process. Lastly, we will
briefly explore the construction of a generalized matched filter detector. This detector
formulation assumes that the multiresolution signature is known ¢ priori. We use the

generalized matched filter as a means of deriving a resolution sampling strategy.

3.1 GLRT for Multiresolution AR Processes

With the GLRT testing strategy, we are interested in testing for large local changes
in the statistical behavior of the data. Specifically, our comparison is between the
statistics of a local area X; presumed to contain a target and another area X, presumed
to be clutter. The configuration of the two areas under test is shown in Figure 5.
Due to the oscillatory nature of the multiresolution signatures as shown in Figure 1
we will use an autoregressive (AR) model for the multiresolution signatures. Each

area will have its own first order AR process model in resolution described as

T(zjip:) = aT(zj;pi)+e z; €X (24)
T(zjip) = al(zjipic) +t z; € X (25)

14




Figure 5: Target and clutter regions which are tested in the GLRT for similarity.

where ¢; and t; are zero mean Gaussian random variables with variances o2, and o7
respectively. We are assuming that the AR processes are spatially independent and
identically distributed over each local area.

We wish to test whether the inner area conforms to the same AR process as the

outer clutter area. The hypotheses under test are

. — 2 _ 2
Hy: a. = a;, O, =0,

H, : a. # az, or o? # o?

Our approach is to construct a GLRT to test for the difference between the two
areas. Let us define a data vector T}, [ = t,c which incorporates the data in each

local area as

T, = {T(zy;p1)---,T(21;pn8), (225 01), - - -, T(Z2; PN),

15




o T(zg;01)s-- - Tzgipn)Y z; €4, I=t,c (26)

Our test will use N resolutions, J, pixels in area X, and J; pixels in area A;. The

joint distribution for the spatial/multiresolution process in &j is

1 NJ EgjeXinNm IT(%;P;) azT(wj,p,_l)l
pl(L) = exp —

21 oy 20}
ezp [— Leet Z(If’ i °)I2] I=t,c. 27)
The GLRT is defined as [4]
A = 22 TP 2 (29

" maxg, po(T|60o)

where T is the entire data set encompassing both regions. 0i = [ax, 07", k =0,1 are
the unknown parameters in our test for each hypothesis. The extrema of this test
are satisfied using the maximum likelihood estimates of the parameters conditioned
on the hypotheses [4]. We will denote the parameter vector corresponding to these
estimates as 0 = [ax, 62], k =0, 1.

To evaluate the GLRT, we will assume that the data in the two regions are in-
dependent. Recall that under hypothesis H; the parameters of the AR processes
are assumed to be different. Using the assumption that the statistics of X, and A}
are independent, the extrema of the joint conditional distribution p;(T'}f;) can be
decomposed as maxg, p1(L]6:) = p(L|éc)p(It!ét). The parameters for each area are
estimated separately. Let §; = [a;,67]f, | = t,c be the parameter vectors corre-
sponding to the maximum likelihood estimates based solely on the areas &j. These

parameter estimates are given as

Yeen Ty T(_j; pi)T* (255 pi-1)

a = 2 (29)
Ez EA’I 1 lT(I:_,,p, l)l

6 = Z ZlT("L'J’pt — T (zj; pi- )P I=te (30)
zGX,t 1
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Under hypothesis Hy, the AR models are assumed to be identical. Consequently,
the unknown coefficients are estimated using both regions X, and &;. Again, using
the assumption that the statistics of X, and A&} are independent, the extrema of
the joint conditional distribution po(T'|fo) can be decomposed as maxg, po(Z|fo) =

p(I_c|9o)p(I tléO)- Let 8y = [ao,62]", and Let X = X, U X;. These estimates are

Zgj €x Zﬁl T(%‘; Pi)T*(ﬁj; pi-1)

(31)

a0 =
’ T ex Tt T (5 pi-1)
"2 1 Xy o 2
0y = Z Z T (z;; p:) — aT (x5 pic1)) (32)
NJcJt gje;t’ =1

For the case where many more clutter pixels are used than target J. >> J;, ap =~ e,
62 ~ &2, and fo ~ 6. The GLRT can then be approximated as

AT > B. (33)

) = maxo p1(L16) _ p(Lelle)p(Lil0y) , plZ]
maxg, po(L100) — p(T.|00)p(T;100) ~ p(T:|

The log GLRT is then given as

$(T) =log A(T) = NJy(log (v2mé.) —log (V276))

1 N H
= > 2 IT(zp) —acT(zj0-1)> > B (34)

+
267 z;€X: i=1

To help mitigate the assumption of statistical homogeniety over the target area
we will only label the center pixel of the area X; with the outcome of the test and
not the entire target area which would be standard. This creates a pixel-by-pixel test
where the local target area is used to help provide averaging in the estimation of the

AR coeflicient and variance.

3.1.1 Special Cases

The special cases that we examine are motivated by models for the process statistics

of the clutter. For natural terrain, a typical assumption is that each resolution cell
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in the SAR image contains a large number of small amplitude scatterers. We will
assume that the complex reflectivities of the scatterers are independent, identically
distributed (i7d) random variables with mean zero and covariance o2I where I is the

identity matrix.
Special Case 1: AR vs. Brownian motion

This clutter model provides a motivation to test between an AR process indicative
of a target vs. Brownian motion clutter. Brownian motion is simply an AR process

where a. = 1 [25]. The GLRT then simplifies to the test

¥s(I) = NJy(log(V2ré.) —log (V2réy))

1 N -
+om 2 L IT(asie) = Tlagipia) > B (35)

¢ z,€Xi=1

We can create a simpler test by assuming o = o?. If we also examine the case

where &; = z; (a single target pixel), a Pearson correlation test can be constructed

as Nt

| 27! Tz p0)T*(255 pis)] 5 8, (36)
S T (z5500) 2

The heuristic used here is that the AR coefficients of clutter will be close to 1 due

Pa(L(z;)) = la:| =

to the Brownian motion characteristics while the target AR coefficients would be less

than 1.
Special Case 2: AR vs. White noise process

The statistical model derived in Section 2 for the multiresolution process showed
that a resolution increments process using a specific set of resolutions is a white noise
process. Using this increments process I, a test between an AR process in &} and

white noise (a’, = 0) in X, can be devised. The increments process for cultural objects

18




remains an AR process. However, the driving noise for the AR increments process
for the target is now correlated. For the sake of simplicity, we will approximate the
increments process for the target as AR with an id noise source. In the derivation
of this detector, a simple replacement of the original process T' by 7" is made. The

multiresolution increments process can be described as

Tle;ip) = T(zpim) +¢ z; €, (37)
T'(zj0) = aiT'(zj;01) +1; z; €A (38)

where ¢! and #! are zero mean Gaussian random variables with variances %, and o

respectively. We are testing between
Hy : a.=d,=0, o’ =03

H : ot #£a. =0, or 02 # o

The GLRT simply becomes an estimate of the AR coefficient in region A; as

| S e Tita T' (25 p)T (25 pica )| i g (39)
Yajer Limt [ T7(255 pi-1)]?

Ye(L) = 8] =

The processor can be further simplified when A, = AX; = z;. This is a single pixel

detector. The GLRT becomes the Pearson correlation test in resolution

T T (25 0)T* (25 pisi)| B
e W

¥s(L(z;)) =

A related heuristic test can be constructed which exploits the notion that the
clutter increments process is uncorrelated. However, when a cultural object is present,
there will be a nonzero correlation coefficient due to the presence of a mean value.

This test is an unnormalized autocorrelation test [18]
r = H
(L (z;)) “‘3 Z (z5;0)T " (zj; piv1) > B- (41)
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3.2 Composite Tests

We will base our detection strategies on the increments process T"(zy; p). The cultural
object signal model motivates detectors which exploit the difference in the mean when
either clutter or cultural objects are present. We will use the same convention as
Section 3.1 where we have a target area X; and an assumed clutter area X.. For the
cases examined here X; = z;, we have a pixel-by-pixel test. The hypotheses under

test will be

Hy: T'(z;) ~ Ne(p, 3g), p=0
Hy: T'(z;) ~ Ne(p,Zg), p#0

with Egj = vyo2l. We also have available I"(z;), z; € A, which are surrounding
locations assumed to be clutter.

We have chosen the composite test due to the severe variability of SAR signatures
when collection geometry and object condition are not known. This is opposed to
choosing a specific object signature and designing a matched filter to it. There does
not exist a uniformly most powerful test for the above composite hypothesis. The
optimal invariant test with respect to scale and orthogonal transformations is the

so-called F test [17] which is equivalent to

. E—I/ZT' 2 N2 IT"(z;; pi :
W) =2 = Y L@l L @)

where 62 is the estimate of o2 from surrounding cells assuming no target is present,
le.,

A2

Z Zz eXe lT (z:._p pz)l
% = M(N =1)

(43)

The distribution of the test statistic is ¥o(z j) ~ F(2(N - 1),2M(N — 1)) under
Ho, and ty(z;) ~ F(2(N —1),2M(N — 1); "N (4?/y0?)) under H;. Here F(m,n)

is the central F' distribution with m and n degrees of freedom, and F(m,n;n) is
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the noncentral F' distribution with the same degrees of freedom and noncentricity
parameter 7. For the case of large M(N —1), the estimate of 62 is almost exact. The
distributions become a scaled central chi-square under 'Hp and a scaled non-central
chi-square under H;.

A number of other detection strategies are often used to screen data. Our baseline
test with which we compare the multiresolution test performance is a pixel-by-pixel
F test (X; = z;) applied to single resolution SAR image data at the finest resolution.

This test is \
T(z; H
(T = TELIL 2 (44

This test has been used extensively in initial screening algorithms on SAR data[22].
This test searches for bright signatures in relation to the surrounding clutter. This
test is the optimal invariant test with respect to scale and orthogonal transformations.

This test can also be generalized to a multipixel test as

; T—j; 2 1
¥i(T) = Eg’e’“l&z,(x ey (45)

[o]

3.3 Generalized Matched Filter

The problem we consider is that of detecting a known target at a given spatial loca-
tion z, € IR? embedded in zero-mean, complex-valued Gaussian clutter. Using the

development of Section 2, we can model the SAR image under the target present

hypothesis as:
Hy, : T(z;p) = S(z — zo; p) + C(g; p)-

Here, we assume that C is a stationary complex-valued Gaussian process that models

ground clutter, while S is a known coherent target signature. The target absent

hypothesis, Hp, is:




Note that for simplicity we have ignored receiver noise and the fact that in many

cases the target typically occludes the ground clutter.

Single-Resolution Detector. In the single-resolution case, po, the likelihood ra-
tio test is equivalent to computing the following statistic ¢ and comparing it to a
threshold [26],[28]:

p= / T(z; po) f(z — zo)dz 25 (46)

Here, f is a solution to the integral equation

[ 2,98 p0)dy = 1), (47)

and X is the covariance function for C. The detection problem is nonsingular for a
given signal S if the integral equation (47) has a solution [28]. When C is a white
process, the solution to (47) is f = §*, and (46) becomes a matched filter detector.

Multiresolution Detector. Suppose, however, that we are allowed to use the SAR
image T' at multiple resolutions. The multiresolution likelihood ratio test has a form

similar to the single-resolution case:
¥ = f / T(z; p) f(z — zo; p)dzdp. (48)
where now, f is a solution to the equation,
/ X(z, p; ¥, ') S(ys p')dydp’ = f(z; p), (49)

and X is the covariance of C(z;p).

Figure 6 shows receiver operating characteristics for the single and multiresolution
detectors for the signal s shown in Figure 1. In computing the curves for Figure 6, A
was a sinc function and we imposed the constraint that the finest available resolution
p is equal to one fourth of the spacing between adjacent scatterers (p > D/4). One

can see that the multiresolution setting admits a significant performance gain over

the single-resolution case.
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Figure 6: Receiver operating characteristics for the multiresolution detectors using

the signal based on three point scatterer target.

23




Practical Considerations. In comparison to the single resolution detector, Equa-
tion (46), the multiresolution detector in Equation (48) requires evaluation of a double
integral involving a continuum of resolutions. Practical considerations may lead one
to consider using only a finite number of resolutions, p1,...,p, and replace the statis-
tic T in Equation (48) by some approximating statistic, say 9.

A simple approach to approximating i would be to replace the continuously-
indexed function s(z; p) by its (discretized) wavelet or wavelet packet decomposition
[27] and solve the corresponding integral equation for, say f.(z:;;27F), and use f, in
place of f in (48). From a practical standpoint, wavelets and wavelet packets have the
advantage that they are computationally very efficient. However, they are typically
limited to dyadic (triadic or similar) resolutions (i.e., integer powers of 2 or 3) and
are not necessarily the optimal choices of resolution.

As an alternative, we applied a sampling scheme described in [26] to solve the
problem of optimally approximating the test statistic ¥ using a finite number of res-
olutions. This latter sampling scheme requires that one choose resolutions py,...,pn
to be the n quantiles of the function A(p) = [y(p)||s(z; p)|[>]*/3, where B is a function
depending on X, the covariance of C(z;p), and || - || is the L, norm. Details of this
approach are described in the appendices.

Figure 6 additionally shows the performance of two multiresolution-based detec-
tors that use a finite set of resolutions. The wavelet-based resolution decomposition
uses the dyadic resolutions {D/4, D/2, D,2D}, while the optimal multiresolution sam-
pling scheme for n = 4 uses the resolutions {0.25D,0.35D,0.525D,1.5D}.

Figure 6 shows that the optimal resolution sampling scheme performed much
better than the wavelet sampling scheme. Finally, a fifth curve in Figure 6 shows

that optimum detector performance is achieved for large enough n.
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4 STAR Algorithm Description

4.1 Introduction

This section reviews the algorithm developed under the Strategic Target Algorithm
Research (STAR) program executed for Lincoln Laboratories. This algorithm detects
extended targets in clutter. It served as a basis for insertion of our multiresolution
detection strategy and as a means of performance comparison. Though originally
developed for polarimetric data, the ERIM STAR algorithm is general in the sense
that it accepts any multi-channel data set such as multiresolution data. We used this
algorithm with both single resolution and multiresolution data.

The ERIM STAR detection algorithm exploits statistical knowledge of local clut-
ter. Figure 7 illustrates the algorithm logical structure, which consists of five compo-
nents: contrast-enhancement /speckle-reduction, CFAR screening, aggregation, fea-
ture extraction, and assignment of a cue rating factor (CRF, aka decision statistic).
ERIM’s detection algorithms assign CRFs to aggregate clusters of pixels (blobs).
High CRF's indicate high confidence that a blob is a target-of-interest, while low
CRFs indicate low confidence that a blob is a target-of-interest. By definition, the
targets-of-interest are the large and medium vehicles; all other man-made and natural
objects are uninteresting. Reports of the blob locations, together with their CRFs
pass on to scoring software, which evaluates ROC curves by thresholding the CRF's
and counting ground-truthed detections and false alarms.

Contrast-enhancement /speckle-reduction (CESR), is a pixel-by-pixel operation
that exploits second-order statistical properties of multi-channel clutter to produce
an enhanced real-valued image from the complex-valued multi-channel measurements.
By simultaneously increasing the contrast between targets and surrounding clutter
and minimizing clutter speckle (without compromising resolution), CESR improves
the capability of CFAR screening to highlight target pixels and reject false alarm pix-
els. Empirical observation indicates that the upper (but not lower) tails of the clutter

distributions of the CESR image can be conservatively (in terms of false alarm rate)

25




l Contrast Enhancement/Speckle Reduction |

| CFAR Screening |

:

I Aggregation 4}—-——-[ Max CFAR CRF ]—’- Detection Score

Figure 7: Original STAR multi-channel contrast-based detection algorithm flow.

modelled as log-normal. Thus we evaluate a CFAR statistic which measures the local
contrast (in local standard deviations from the local mean) of the log CESR image.
We employ a comparatively low screening threshold that, based on log-normal theory,
predicts a false alarm rate of 10> FA/km?. This threshold provides at least one CFAR
hit on 98% of the deployed large and medium training targets.

Obscured targets generally produce multiple disconnected CFAR hits in close
proximity to one another. Thus, we employ a cascade of dilation and skeletonization
operators to aggregate nearby (on a target-sized scale) CFAR hits into connected,
multi-pixel (spatially distributed) blobs. Ideally, the size and shape of target-induced
blobs reflect the size and shape of the underlying targets; obscuration generally re-
duces the fidelity of the blob size and shape. False alarm rates based on counting
nearby CFAR hits that are merged into aggregate blobs, each characterized by their
maximum CFAR statistic, are an order of magnitude lower, typically, than those
based on counting individual-pixel CFAR hits.

The detection algorithm assigns the maximum value'of the CFAR statistic over
the pixels comprising the blob. Our detection algorithm combines the notion of pixel-
by-pixel CFAR with aggregation. The detector exploits only the maximum available
contrast against local clutter as its measure of “targetness”.

The discriminator exploits more characteristics, or features, of interesting targets
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than does the detector. Consequently, the discriminator does a better job of rejecting
culturally-induced false alarms, such as buildings, the small target, uncamouflaged
vehicles on roads, trihedrals, sensor artifacts, etc., than the detector. In addition,
the discriminator does a better job of rejecting clutter-induced false alarms than the
detector.

The multiresolution detection strategies effectively replace the front end of the
STAR algorithm which is concerned with the pixel-by-pixel detection operation. This
is shown in Figure 8. Our conjecture is that using detection strategies based on mul-
tiresolution signatures, enhanced target/clutter contrast will be obtained. As a means
of testing that conjecture, the threshold values remained constant when single res-
olution and multiresolution data was used. Another conjecture was that a higher
percentage of pixels will be detected over the extended target using multiresolution
data. This conjecture would imply that a redesign of the post pixel-by-pixel detection
morphology would be in order. The morphology would be made less aggressive. We
decided, however, to leave the morphology unaltered since we found few instances of
multiple targets merging together. Lastly, we replaced the discriminant module of
the STAR algorithm which is based on a quadratic discriminator by a tree structured
classifier. The quadratic discriminator is fundamentally based on the joint Gaussian
nature of the feature vector. The tree structured classifier does not make this as-
sumption which we felt was more realistic with respect to the statistics of the derived

features.
4.2 Algorithm Description

4.2.1 Contrast Enhancement

Poor contrast between targets and background clutter, together with speckle, are ma-
jor factors which limit performance of automated SAR image-based target detection
algorithms. Contrast-enhancement/speckle-reduction (CESR) techniques exploit the

multi-channel data available at each pixel to maximize contrast and minimize speckle
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Figure 8: Algorithm flow of multiresolution/STAR detection algorithm.

while preserving resolution. A vector I' of complex-valued data is associated with
each pixel in a multi-resolution SAR image. Conversely, we can also use the mul-
tiresolution increments process I'. CESR techniques combine these measurements
into a single real value that exhibits maximum contrast with respect to background -
clutter, and which represents an optimum estimate of the intensity of a Gaussian
speckle-modulated field. The CESR process evaluates a quadratic form involving the
data vector at each pixel and the inverse of the typical clutter covariance matrix.
Both contrast-enhancement and speckle-reduction improve performance of the initial
CFAR detection stage. Improving the target-to-clutter ratio effectively increases the
separation between the image target and clutter means, while reducing speckle de-
creases the standard deviation of the clutter (and maybe the target). Here we provide
the contrast-enhancement motivation for the CESR processor; Novak [1] provides a
speckle-reduction motivation.

Consider, at each pixel z;, a linear combination of the data available at that pixel:
g'(z;)T(z;); g(z;) is a vector of spatially-adaptive filter coefficients. The contrast
ratio (target-to-local-clutter ratio) at the output of this filter is:

l¢(2)T ()|

- (50)
g(z;)L(=:)|)

C(z;) =

EE,‘EXC(
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The Eg.ex,() operator denotes expectation over an annular twice-target-sized spatial
region A, centered on pixel z;. By, = Ey ex,(T(2;)T"(z;)) denotes the local clutter
covariance matrix. A simple eigenvalue argument establishes the optimum contrast
enhancement filter as g(z;) = X7 T(z;)/ "2;),1/ "’I_(g_j)ll. The maximized contrast
produced by this data-dependent filter is f(gj)E;le (z;). The contrast-enhanced

image, in amplitude units, is

ios(z;) = |/I'(z,) %5 L(ay). (1)

Covariance matrices for a wide variety of natural clutter, evaluated over twice-
target-sized averaging windows, differ principally in terms of their scaling level. The
relative levels of the covariance matrix components vary only slightly with terrain
type. Thus, we assume that the local clutter covariance is of the product-model
form ¥, = az(gj)flgj, where f}_,gj is normalized so that its span is one. Thus the

maximized local contrast is

T'(z;)3; ' T(z;)

o(z;)

Crmaz(2;) = (52)

To preserve image level, we multiply the contrast by the local clutter cross-section

0%(z;). Thus the contrast-enhanced image, in amplitude units, is

ios(z;) = /I'(2;)85 I(z;). (53)

If we use the covariance matrix for the increments process derived in Section 2 (¥,, =

I), the contrast image simply becomes
ice(z;) = [|L(z;)l| (54)

which is the F test described in Section 3.
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4.2.2 CFAR Screening

Constant false alarm rate (CFAR) screening is a standard technique for isolating
pixels that appear statistically different than the surrounding pixels in an inhomoge-
neous gray-scale image. In our application, we seek to isolate those pixels that exhibit
positive contrast with respect to the local clutter in excess of what one would antic-
ipate, with specified probability, from locally homogenéous clutter. Qur detection
and discrimination algorithms use these “hits” to trigger the aggregation and feature
extraction.

To establish ball-park pixel-by-pixel screening false alarm rates, it is conservative
and convenient to model the upper (but not lower) tails of locally homogeneous log
CESR clutter as Gaussian. That is, if we measure the local mean and standard devi-
ation of homogeneous log CESR clutter, the associated Gaussian density lies slightly
above the upper tail of the clutter histogram. Based on this model, the screener eval-
uates the two-parameter CFAR statistic '—(20)(—’%)@& When the Gaussian log-CESR
model is accurate, the CFAR statistic is a unit variance, zero mean Gaussian random
variable. Thresholding the CFAR statistic (local contrast) at threshold 8 leads to a
per-pixel false alarm probability of Ppg = %erfc( -\%) The corresponding false alarm
rate (FA/km?), assuming M independent pixels per square kilometer, is

FAR = —];—l—erfc( (55)

2
olk
For resampled spotlight and stripmap ADTS data, M = 16 x 10®/km?. Thus, our
CFAR screening threshold of 3.84 corresponds to 10° FA/km?, based on log-normal
theory. We also use a CFAR threshold of 2.50 to determine the prominent scatterers
on an aggregate blob; this corresponds to 10° FA/km?.

The CFAR screening algorithm uses a rectangular annular window, centered on
the test pixel, to define the clutter surrounding the test pixel, and evaluate its mean
and standard deviation. The window is one pixel thick, with a half-width equal to the

length of a large target (80 pixels). The window size ensures that pixels on one end
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of the target will not corrupt clutter statistics when the testzpixel is at the other end
of the target. Subject to this constraint, the window incorporates the pixels nearest

to the test pixel, which are most representative of local clutter.

4.2.3 Aggregation

The goal of aggregation is to consolidate nearby disjoint hits from CFAR screeniné
into connected blobs which contain the prominent scatteriﬁg centers together with
a minimal number of surrounding pixels. To accomplish this goal, we use two mor-i
phological operators: dilation and skeletonization. Dilation érows disjoint regions to-
gether, while skeletonization eliminates many of the non—proininent pixels introduced
by dilation yet preserves component connectivity. The effect.of our aggrega.tlon oper—
ations is to produce a blob which resembles a hull around the CFAR hits that extends
roughly seven pixels around those hits. :

Dilation evaluates the local maximum of a gray-scale imﬁge over a bﬁnary-valueci
sliding structuring element, which is analagous to the impulse response ;support of a
linear filter. The STAR aggregation algorithm applies a 5 X 5 octagonal structuring
element to the binary-valued hits produced by initial CFAREscreening. Each dilation
effectively increases the diameter of a CFAR hit region by four pixels. Disjoint CFAR
hits separated by less than four pixels grow together intcE) a merged zregion. We
perform a cascade of seven dilations, thereby merging (a,ggrégating) CFAR hits that
are separated by less than 28 pixels (35% the length of a large target) into a single
blob. | | '

While dilation does merge prominent scatterers into aggregate blobs, the resulting
blobs contain many surrounding non-target and/or non—préminent pixé,ls. To elim-
inate these, one could use an erosion operator, which evalu?ates the loéal minimum
over a sliding structuring element. Unfortunately, erosion is the inverse of dilation;
and could re-fragment the blob. Instead, for binary-valued images a skéletonizatioﬁ
operator exists, which is analagous to erosion, but contains a test to av01d fragmen-

tation. We utilize an 8-way connectivity skeletonization operator, which:is analagous
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to an erosion that uses a 3 x 3 square structuring element. We perform a cascade of
seven 8-way skeletonizations after the seven dilations.

A cascade of dilations followed by a cascade of skeletonizations is an easy way to
merge nearby CFAR hits into aggregate blobs. We chose the number of operators
in the cascade, seven, empirically on single resolution data. Had we chosen a very
low CFAR screening threshold, it would have been necessary to employ less aggressive
aggregation to avoid merging the entire scene, or closely-spaced targets due to the high
false alarm rates. Conversely, had we chosen a very high CFAR screening threshold,
it might have been necessary to employ more aggressive aggregation to connect more

widely-spaced target components.
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5 Evaluation of Multiresolution CFAR Performance

This section will outline the empirical evaluation of the various detection strategies
using multiresolution signatures. We examine two cases, synthetically generated tar-
get and clutter signatures, and the use of actual collected SAR data of targets and
terrain through the STAR data set augmented by ERIM DCS data. The simulated
target signature is a SAR simulation of a Howitzer target produced by the Synthetic
Radar Image Model (SRIM) software. The synthetic background clutter is a homoge-
neous complex Gaussian random process. The collected data incorporated collected
targets in various netted states and deployments, natural homogeneous and inhomo-
geneous clutter, and cultural clutter. Section 5.1 discusses the methodology by which
we generated the synthetic scenes. Section 5.2 provides results and trade studies of
the multiresolution detection strategies when applied to synthetic scenes. Section 5.3
explains the results obtained when the multiresolution detection strategies were ap-
plied to the collected SAR data sets. Finally, section 5.4 explains the discrimination

algorithm that we used in these studies and the results that were obtained.

5.1 Synthetic Scene Generation

The images used for synthetic test data were created by embedding 18 synthetic
radar image model (SRIM) generated targets into a simulated homogeneous clutter
background. The targets were 32x32 pixels in size at the finest resolution. The targets
were multiple realizations of a towed artillery piece. Each realization of the target
was generated from different aspect angles which ranged from 0 to 340 degrees in
increments of 20 degrees. The clutter was generated as a 512x512 random field. The
target-to-clutter ratio was 0dB. The resolution of this simulation was 1 foot. This
data set is shown in Figure 9. An additional 512x512 clutter field without embedded
targets was also created for false alarm evaluation. The probability distribution of
the random field was circular complex gaussian (p(zo,y0) ~ M.(0,02%,,)) with unit

variance (0%, , = 1). The random process was independent from pixel to pixel at the
clut
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finest resolution.

Targets were embedded into the clutter by creating a mask defining the target ex-
tent for each realization, then substituting the target pixels for the clutter pixels over
the target extent. The target extent was defined by thresholding the target signature
at a level 10dB below the average target power. Target pixels which fell below the
10dB threshold were eliminated. Target pixels which were below the threshold but
were wholly contained within the target support were allowed, however. This con-
tiguous pixel set defines the support (pixel set) of the target. For our discussion, we
will call this pixel set X;;. The target pixels contained in the mask were then scaled
to unit average power. Areas of the 512x512 homogeneous clutter field conforming to
specific target masks were extracted. Target signatures were then inserted into the
extracted areas replacing the clutter signatures by the embedded target signatures.

The dynamic range of the target was also constrained to a level which was 10dB

above the target’s average power defined as

1
=1 T 15 (56)
gjexcgc
where M are the number of target pixels for that particular target. This was done to
reduce large glints in the target signature.

The target-to-clutter ratio (TCR) of the images are determined from the average

powers of the target and clutter and is defined as

0.2
TCR= £, (57)

O clut

To achieve a particular TCR, the target average power will be held constant whereas
the clutter will be scaled by 62,/TCR (recall that the original 0%,, = 1). The targets
are then embedded into clutter with the appropriate variance for the chosen TCR.

The TCR used in our studies was 0dB.
The mask used to define the extent of the embedded targets are also used to

evaluate the output of the detectors. The mask is used to determine whether or not
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Figure 9: Portion of the data set used in the detector performance studies showing
embedded targets with a 0 dB target-to-clutter ratio.

a detected pixel corresponds to a true target pixel or is a clutter false alarm. The
probabilities of detection and false alarm are then estimated from the detector output

as

# of detected pixels|target Mgt

P - 2R
b # of target pixels Nigt %)
Py = # of detected pixels|clutter _ Na (59)

# of clutter pixels Ng

The finite test sample size effects the fidelity of the processor performance esti-
mates. The most traditional method is to look upon the decisions at each pixel as an
independent Bernoulli trial [6]. A signal-to-noise ratio (SNRp ) of the estimate can

be defined as the mean-square to variance ratio and is given by

_ E*P}
= __2-——.

Up:
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Description Notation
Single Pixel/Single Res. F' test vi(L(z;))
Multi-res. F' test(increments) ¥ (T'(2;))
Multi-res. Pearson corr. test (increments) ¥3(T(z;))
Multi-res. Pearson corr. test Ya(L(z;))
Multi-res. AR test (AR vs. Brownian motion) ¥s(T)
Multi-res. AR test (increments, AR vs. white noise) |  1(T")
Single Res./Multi-pixel F' test ()

Table 1: List of the various multiresolution detection schemes used in the performance
studies.

In our case Ny = 1.8710* and Ny = 2.5z10°. The false alarm estimates will have
signal-to-noise ratios of SN Rf’m = 2.5210° for Pr4 = 1072 and SNRPM = 24 for
Pr4 = 10~* which are acceptably large. The signal-to-noise ratios of target detection
estimates are computed in a similar manner. SNRp > 10® for Pp down to 0.1 which

is also extremely large.

5.2 Empirical Results — Simulated Data

This section will discuss the results of the various target detection schemes when
multiresolution data is used. These detectors were applied to the generated scene
discussed in Section 5.1. Table 1 sumarises the detectors used in this study. It
* should be stressed that the Receiver Operating Characteristic (ROC) curves shown
in this subsection are based on the pizel level detection and not on the extended
object. Extended object detection based on collected data is presented in the next
subsection.

The tests, v¥1,...,%4 used only the signature at the siﬁgle pixel z;, hence the
notation ¥,(L(z;)). In the GLRT tests (5(T), ¥6(I')), A; was a 3x3 pixel area. X,
was a hollow ring of inner diameter 20 pixels and outer diameter 24 pixels. The inner
diameter was chosen to be approximately the size of the target. The multi-pixel F

test, 17, also used a 3x3 region for A%.
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The resolution sampling strategy was chosen to whiten the multiresolution in-
crements process as discussed in Section 2. We used the same resolution sampling
strategy for both the original multiresolution process and the multiresolution incre-
ments process. The resolution studies only examined azimuth resolution as a running
variable. Range resolution was fixed at 1ft. This was due to the conjecture that
multiresolution processing may mitigate the requirement for fine resolution collection
in azimuth. This has implications on wide area séamch scenarios since collection time
per scene is directly tied to azimuth resolution.

Figure 10 shows the detection statistics of the single pixel detection schemes. In
each case, 15 resolutions were used ranging from 1 to 10 ft. The multiresolution
tests provide better contrast than the single pixel single resolution test, 1;, which is
our baseline. The multiresolution F' test, %, affords the best contrast between the
target set and the clutter. 1, and 153 show a smearing of the signature due to the
multiresolution processing. 4, however, does not exhibit this smearing. Figure 11
shows the empirical Receiver Operating Characteristic (ROC) of three of the single
pixel tests: the single resolution/single pixel F' test %;, the multiresolution F' test
on the increments process i;, and the Pearson correlation test on the increments
process 13. This figure shows the performance gain provided by the multiresolution
signatures. The multiresolution F' test, %, provided the best result. Performance
of the tests increased as the number of resolutions used increases. This is seen by
examining the performance of ¢, when 6 and 10 resolutions are used. Lastly, note
that the multiresolution F' test using a 2 ft. starting resolution performed as well
as the single resolution F' test using 1 ft. data. This has implications regarding the
amount of aperture and, hence, search rate, of a SAR system.

The decision statistics showing the increased contrast between the targets and sur-
rounding clutter for the detection schemes using spatial data I' are shown in Figure
12. Note that the spatial/multiresolution GLRT testing for an AR process vs. Brow-
nian motion, ¥5(T), has the best contrast. Figure 13 shows the Receiver Operating
Characteristics of the spatial tests 15,%,%7 and compares them to the baseline ;.
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‘Vl( T (x .)JSingle Res. 1ft. wz(r’ (-xj)) 1-10 ft., N=15

w3(1" (.xj)) 1-10 ft, N=15 W[I(.x.)) 1-10 ft., N=15

Figure 10: Decision statistics of single pixel tests.
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V1 - Single Res. F test
V3 - Multi. Res. F test (incr.)

08 V3 - Pearson Corr. test (incr.)

v,, 1-10 ft., N=10 //
Cef i
AT v,, 1-10 ft., N=6 /

“4F y, 1-10 ft., N=10 7
D2F .
V2, 2-10 ft., N=10

Wl, 1 ft.,' N=1
R e e

Figure 11: ROC results for various single pixel multiresolution detection schemes.
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15 performed the best and significantly outperformed the single resolution F' test, 91,
and the spatial F test 7. The spatial F test and the multiresolution increments test
e performed equivalently. The reduced performance by g is due to the assumed
iid driving noise process in the target process model. We expect that if that test is
reformulated such that the appropriate driving noise process is accounted for that
its performance will be at the level of or better than 5. Histograms of the various
decision statistics are shown in Figure 14. These histograms show the separation
increase between the target and clutter signatures when multi-resolution processing
is applied.

The next set of figures will explore some of the specific tests more fully and bring
out some salient features of multiresolution processing. Figures 15 and 16 show the
performance gain as the number of resolutions used in the F test, 1, increases. Using
a starting resolution of 1 ft., there is a significant gain in performance going from 5
to 10 resolutions. The performance gain is smaller when 15 resolutions are used. At
15 resolutions, the performance gain is effectively saturated. Starting from 1.5 ft.
resolution, the amount of performance gain is severely reduced. The performance is
effectively saturated using 10 resolutions. Figures 17 and 18 show similar results for
the P test.

Figures 19 and 20 show the performance degradation of the P test and F' test as
the starting resolution is degraded. For both the F' and P tests, starting resolutions
up to 1.5 ft. performed as well as or better than the single resolution F' test baseline
detector. At coarser starting resolutions, the multiresolution tests outperform the
single resolution test at moderate/high false alarm rates.

Figures 21 through 24 show the performance of the tests when the starting res-
olutions were varied. The number of resolutions were held constant at 15. In each
case, the performance of the tests degrade as the starting resolution is coarsened. At
a starting resolution of 1.5 ft., the multiresolution F' test, 13, and the Pearson cor-
relation test, 13, performed the best and were essentially equivalent. They exhibited

a significant performance gain over a single resolution F' test. At 2 ft. starting reso-
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Single Pixel F Test V1 7 AR Test (cont. rev.) Vs

_AR Increments Test Ve Multiple Pixel F Test W

Figure 12: Detection statistics for the various spatial multiresolution strategies.
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Single pixel F test 1 (dashed)
Multipixel F test W7 (solid)
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Figure 13: ROC performance of the various spatial multiresolution strategies.
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Figure 14: Histograms of the decision statistics for the various strategies
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Figure 15: ROC performance of the multiresolution ¥ test as the number of resolu-
tions are increased. Starting resolution is 1ft. :
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Figure 16: ROC performance of the multiresolution F' test as the number of resolu-
tions are increased. Starting resolution is 1.5ft.
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Figure 17: ROC performance of the multiresolution P test as the number of resolu-
tions are increased. Starting resolution is 1ft.
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Figure 18: ROC performance of the multiresolution P test as the number of resolu-
tions are increased. Starting resolution is 1.5 ft.
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Figure 19: ROC performance of the multiresolution F' test as the starting resolution
is coarsened.
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Figure 20: ROC performance of the multiresolution P test as the starting resolution
is coarsened. :
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Figure 21: ROC performance of the multiresolution tests for a starting resolution of
1.5 ft.

lution, multiresolution gain is only exhibited at moderate/high false alarm rates. At
a starting resolution of 3 ft., there was practically no performance gain provided by
the multiresolution tests. Lastly, at a starting resolution of 5 ft., the multiresolution
tests performed worse than the single resolution test. The degraded performance at
the coarse starting resolutions is to be expected since the law of large numbers will

become applicable to the target signatures in this resolution regime.
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Figure 22: ROC performance of the multiresolution tests for a starting resolution of
2 ft. ,
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Figure 23: ROC performance of the multiresolution tests for a starting resolution of
3 ft. ,
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Figure 24: ROC performance of the multiresolution tests for a starting resolution of
5 ft. :
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5.3 Empirical Results — STAR Data

In this subsection, we describe the results obtained from applying the various mul-
tiresolution detection schemes on collected data. The STAR algorithm described in
Section 4 is brought to bear on this problem. The STAR data set was also enhanced
using ERIM DCS data from Grayling, MI. These data sets were ground truthed with
respect to the type and position of the targets within each scene. The scoring that we
will show in this subsection is based on the detection of the eztended targets and not
the pixel-by-pixel scoring that occurred in the previous subsection. All non target
detections were counted as false alarms regardless of their cause (e.g. placed trihe-
drals, other cultural objects, etc.). No spatial filtering was performed in the detection
stage to eliminate small false alarms. The peak value of the decision statistic within
a detection blob was used as the cue rating factor to generate the empirical ROC
curves.

The data sets used in these studies were provided by the Lincoln Laboratory
ADTS system and the ERIM DCS system. Both systems are fine resolution SAR
systems. The ADTS data is the standard data set that was used in the Strategic
Target Algorithm Research (STAR) program. This data set was used so we could
compare our results with previous detector developments. This data set contained
numerous military vehicles in various deployments and netting conditions. There were
approximately 780 target realizations in the ADTS data set. This set was augmented
by the DCS collections in Grayling, Aberdeen and Eglin. An additional 260 target
realizations were made available. The clutter data that was used was from the ADTS
sensor. This clutter included both natural and cultural clutter. Approximately 750
square km of clutter was used in the studies.

The TCR gain provided by multiresolution processing on the data sets is shown
in Figure 25. This figure shows a rank ordering of the TCR gain between the single
resolution F test and the multiresolution F' test for both the ADTS and DCS data
sets. We define the TCR gain through a general statistical distance metric called the
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Hellinger distance. For the two hypotheses

H,: Clutter ¢ ~ po(2)
H,: Target ¢ ~ p1(v)

the distance (TCR) between the target and clutter distributions is defined as

1/2
TOR= Hm(¥),m) = o [ [0 -sw)fas] . ()

For two univariate Gaussian distributions where po(t)) ~ N (g, 0¢), p1(¥) ~ N (pe, 04),
the Hellinger distance simplifies to

Ly 2 (e )
H(po(),p1(¥)) = \/5[1 \/—:_ “p{zaz('y2+1)}

where v = 02/0?%. Other metrics such as Mahalanobis distance assume that the mean

1/2
(62)

value or variance are equal between the two hypotheses.

We calculate the Hellinger distance (TCR) between pairs of target and clutter
areas of the decision statistics of the detection schemes. For the single resolution
case we call this H,..;. The multiresolution case is called H,,..;. We compare the
Hellinger distance on the same clutter/target areas to compute gain. The clutter
areas chosen were natural clutter areas. Each target realization had a distinct clutter
area associated with it. The Hellinger distance is an “amplitude” measure of distance.

Therefore, the gain in dB is computed as
Gain (dB) = 20log Hpres — 2010g Hyres. (63)

We found an average of 4.2 dB of TCR gain due to multiresolution processing for the
ADTS data and an average gain of 3.7 dB for the DCS data.
Figure 26 and 27 shows the ROC performance of the various tests on the STAR

data set. Figure 26 compares the performance of various multiresolution detectors
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and compares it to the single resolution STAR baseline algorithm ;. 14 performed
the best of all the tests having both the smallest false alarm rate and the largest
detection rate. 13 was next followed by ;. The baseline single resolution test, v,
performed the worst both in terms of detection rate and false alarm rate. In all cases
the starting resolution was 1ft. 15 resolutions between 1 and 10 ft. were used in
the multiresolution tests. The detection performance of the single resolution detector
saturated at P; ~ .55. This is due to the setting of the pixel-by-pixel threshold. No
pixels were detected on some dim targets. This threshold remained constant when
the multiresolution process was used. The multiresolution detectors saturated at
P; ~ .78. The enhanced detection performance demonstrates the TCR gain afforded
by the multiresolution processing. The same conclusions can be derived from the
DCS data set and is shown in Figure 27.

Figure 28 shows the performance of 1, and ¢4 as a function of starting resolution.
As resolution is coarsened from 1 to 3 ft. the single resolution detector 1; has degraded
detection performance. The pixel-by-pixel threshold was held constant. Therefore,
as resolution is coarsened there is less peak target energy. For all three resolutions
considered in this study, the multiresolution detector significantly outperforms the
single resolution detector. The multiresolution detector provides better detectability

at 3 ft. than the single resolution detector at 1 ft.

5.4 Results - Discrimination

This subsection describes the results of the discrimination stage of the algorithm.
The results obtained in this section are based on the STAR collected data set. Our
discrimination algorithm is a false alarm rejection algorithm based on spatial features

derived from the binary detection maps that the STAR detection algorithm provides.

5.4.1 Feature Extraction

Here we discuss the rationale and computation of the features extracted for each

aggregate blob. Bear in mind that these features are selected based on their potential

56




Figure 25: Target to clutter ratio gain afforded by multiresolution processing.
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Figure 26: ROC performance of the multiresolution tests applied to the STAR data
set.
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Figure 27: ROC performance of the multiresolution tests applied to the DCS data-

set.
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Figure 28: ROC performance of the single resolution and multiresolution AR tests
when the starting resolution is coarsened.
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to cluster differently on targets-of-interest than on other objects. Table 2 summarizes

the features extracted.

| Type | Feature |

mass
spatial | diameter
square-norm. rotational inertia

Table 2: List of features extracted for each aggregate blob.

I Multiresolution decision statistic I

!

I Threshold application |

;

l Aggregation I—-l Max CFAR CRF |-—> Detection Score

:

I Feature Extraction |——0| Tree Struct. Class. }—'- Discrimination Score

Figure 29: Detection/discrimination algorithm flow of multiresolution/STAR algo-
rithm.

The three spatial features provide distinct measures of coarse spatial properties
of an aggregate blob. Mass is the number of pixels in the blob. Diameter measures,
roughly, the maximum linear dimension of the blob, in pixels. The diameter feature
actually is the integer part of the length of the diagonal of a horizontally or vertically
oriented rectangle which just encloses a blob, rounded to the nearest integer. For
example, the diameter feature for a 5 x 7 pixel rectangle, oriented horizontally, is 8.
Square-normalized rotational inertia (SNRI) is the second moment of the blob pixel

coordinates about the blob center of mass (its inertia), divided by the inertia of an
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equal-mass square blob. The expression for SNRI is:

6 M-1
SNRI = ———— 3 ((am — 2)" + (ym — 9)?) ,

MM-1) &

where the (,,, ym) are the coordinates of the m** pixel on the blob, and (Z, §) are
the coordinates of the blob center of mass, and M is the blob mass. The SNRI for a
horizontally-oriented L x W pixel rectangle is % % As the length/width ratio
(aspect-ratio) of the rectangle increases, the SNRI approaches half the aspect-ratio.
In general, SNRI increases as higher proportions of blob pixels become distant from
the center of mass. Filled circular blobs exhibit low SNRI (less than one), while long,
thin, or annular blobs exhibit high SNRI. Squares exhibit unit SNRI.

5.4.2 Discrimination Algorithm /Results

The discrimination algorithm that we employed in these studies was a feature based
tree structured classifier. We only examined binary spatial target features since we
conjectured and found that the multiresolution process provides a higher per pixel
detection rate. We found that the extended target had more pixel hits on it using
multiresolution data than for the single resolution case. We therefore conjectured that
the binary spatial features would be a powerful and simple discriminant feature set.
We took the tree structured approach due to its nonparametric nature. There are no
compelling reasons known to the authors that would lead to any specific parametric
model for the three spatial features cited; especially a multivariate Gaussian model.

Tree structured classification approaches are nonparametric in nature. By this we
mean that no prior statistical model is assumed for the classes of interest. Rather
the processor is trained from collected data. Tree structured approaches have one
great advantage over other nonparametric algorithms, however. For large training
sets tree structured approaches have been shown to converge to the optimum per-
formance (minimum probability of error) produced by the Bayes classifier [29]. This

states that the tree structured classifier would attain the performance of a parametric
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processor where the underlying models were completely specified and correct. Many
nonparametric algorithms do not exhibit this characteristic since they must assume
a priori the order of the processor and hope that the data will conform to this order.

A tree structured algorithm is a sequence of binary decisions on data to extract
information comprehensively and rapidly. A decision tree is shown in Figure 30. The
tree is constructed by repeated splits of the feature space X into subsets. By feature
space, we mean the space of all possible measurement vectors (a measurement vector
consists of an ordered group of observables e.g. the vector of binary spatial features
of an extended target detection). As shown in the figure, each split is binary (the
feature space is split into two subsets). The decision point where a split occurs is
called a node.

Trees are normally grown via a steepest descent type algorithm. These algorithms
are formally equivalent to the K-means algorithm [30]. These algorithms are iterative
and try to optimally split the feature space into two distinct areas at each node. A
minimum missclassification error criteria is used as the measure of performance at
each node. An initial set of partitions are selected. The missclassification rate is then
estimated. The partitions are perturbed until the minimum missclassification rate is
found at that node. This procedure is stepwise optimal [31] (no other procedure can
do better with respect to minimum error rate at this node).

The decision of when to declare a node terminal is based on a “purity measure.”
Each node splits the feature space making the resultant data “more pure.” Numerous
purity measures exist. One of the most often used is [29] is the entropy of the data
at that point. If the purity of the data does not change by a predetermined amount
that node is defined as a terminal node.

Class labels are easily affixed to terminal nodes. The tré,ining and tree growing
procedures are supervised. Therefore each input data vector has a label for each
of the classes of interest. A simple voting routine where the class with the largest

number of training data residing in that partition defines the label of the terminal

node.
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Figure 30 depicts the results obtained by running the tree structured discrimina-
tion algorithm. As shown, for the single resolution case, only 173 of a possible 297
targets were given to the tree structured classifier. This is due to the lower detection
rate of the single fine resolution detector ;. In addition, 365 false alarms were pre-
sented to the detector from the single resolution data. Conversely, the AR test 3 had
a much higher detection rate so that 261 of the 297 targets were presented to the tree
structured classifier. Its lower false alarm rate provided 287 flase alarms. A classifica-
tion tree was grown and optimized for the single resolution and multiresolution cases.
The results show that for the single resolution case, 20 false alarms were still classified
as target while 4 targets were rejected as false alarms. For the multiresolution case,
14 false alarms were classified as target and 0 targets were rejected as false alarms.
These results lend credence that the multiresolution detector provides more target
“fill” on extended targets (higher per pixel detection rate) which provides a better
discrimination for spatial the features used here. This extra “fill” can be exploited

more fully in a discrimination algorithm than that found in the single resolution case.
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365 fa’s l 287 fa’s
Mass
Diameter Rotational Inertia

Figure 30: Results of the
multiresolution data.

/ N\

Single Res: 20 fa’s classified as target
4 tgt’s classified as false alarms
AR Test: 14 fa’s classified as target
0 tgt’s classified as fase alarms

discrimination algorithm on both the single resolution and
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6 Conclusions

In this section we briefly summarize the main points of the current research. We have
attempted to explore multiresolution processing as a means of providing high per-
formance target screening in SAR data. We are exploiting the interference between
prominent scatterers in a resolution cell as our discriminant. The hope is that the in-
terference will provide a characteristic signature change as resolution is changed. We
formulated statistical models for both clutter and target multiresolution signatures.
We showed that the multiresolution clutter process was a Brownian motion process.
Using the property of independent increments for Brownian motion processes, we de-
rived a simple resolution sampling strategy that whitens the clutter process. Based
on these models, we developed a number of multiresolution tests. These tests con-
sisted of a Generalized Likelihood Ratio approach, composit hypothesis tests and a
generalized matched filter. We discounted the matched filter test since it presupposed
a specific target signature which we didn’t feel conformed to the spirit of first stage
screening.

Examining synthetic data, we found that the multiresolution detector far out-
performs single resolutions detectors on a per/pixel basis. A Generalized Likelihood
Ratio approach using a local target area provided the best result. We noted that the
performance of the multiresolution detectors saturated at approximately 15 resolu-
tions. We also noted that when the starting resolution was coarsened, the performance
of the multiresolution detector suffered. Performance also saturated at fewer resolu-
tions. However, at 2ft resolution, the multiresolution strategies performed as well as
or better than single resolution strategies at 1 ft. In our studies we kept the range
resolution fixed at 1 ft. This allowed us to explore the collection aperture implications
of the multiresolution study.

We used the multiresolution detection strategies as a substitute for the first stage
of the Strategic Target Algorithm Research (STAR) algorithm which we have used as

a means of detection/discrimination of extended targets in clutter. We applied the
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multiresolution approaches to Lincoln Laboratory ADTS data and ERIM DCS data
encompassing both targets and clutter. We found that the multiresolution approach
provided significantly better detectability of targets (.8 vs. .55) and better false alarm
performance (4 vs. 6 false alarms/km?). These results were consistent with our TCR
findings. We found that using the multiresolution detection schemes, an average 4 dB
target to clutter ratio gain was obtained when the DCS and ADTS target/clutter data
sets were examined. The multirésolution GLRT provided the best results in our study.
We also found that the multiresolution detectors performance was surprisingly robust
to starting resolution out to 3ft. Significant detectability gains were encountered there
(.75 vs. .48).

We found that the multiresolution detectors also had a much larger pixel-by-
pixel detection performance than the single resolution scheme for collected extended
targets. This manifests itself in spatial features that can be used for target discrimi-
nation. We constructed a tree structured classifier as the basis of our discrimination
algorithm. We applied the target detections and false alarms provided by the single
resolution and multiresolution detection schemes. We found that the discrimination
algorithm provided much better performance based on the multiresolution data than
that of the single resolution data. Using the multiresolution schemes, no targets were
rejected as false alarms and 273 of 287 false alarms were rejected. For the single
resolution case, only 169 of 297 targets were detected with 20 false alarms. This im-
plies that multiresolution processing may provide spatial features that provide high
performance discrimination capability.

The appendices have a detailed derivation of a multiresolution sampling strategy
for a generalized matched filter detector. Solutions for specific SAR impulse responses
are provided. This analysis shows that a significant performa,hce gain can be obtained
over single resolution and dyadic multiresolution strategies (wavelets). This analysis

would be used as a precursor to a multiresolution target classification algorithm.
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Appendix A Resolution Sampling Strategy

In the multiresolution problem, the objective is to use images of various resolutions

in order to enhance target detectability. A natural first question is:

- given a known target or a known class of targets, what are the optimal resolu-

tions to be using in order to maximize the performance of your detector?

The purpose of this appendix is to provide an analytical solution to this problem
under the assumption of a completely known target signature. In fact we actually
solve a more general problem in that we derive a strategy which is optimum when
taking into account target detectability and the costs of processing the images, i.e.,
every new resolution requires some new processing to form an image at that resolution
and our general solution takes this into account also.

As stated earlier, there has been a great deal of work on understanding the wavelet
transform as a deterministic operator on square-integrable functions and to our knowl-
edge very little work has been done on wavelet transforms in a stochastic environment,
which is what we have. Because of our framework, it would be very interesting to
research properties of wavelets in this more general stochastic setting.

We make some further assumptions on the clutter process W and thermal noise
process N,(+; p), in that:

(al) W is a white circular complex Gaussian spatial process in R? with intensity

02, i.e., for disjoint bounded sets A;,..., Ay C R?,

[ W 155} (A-1)

are independent circular complex Gaussian random variables with

d

(a2) for fixed p, N,(- ; p) is a spatially white circular complex Gaussian process.

2
) = o2 area (A;) 1<7<k (A-2)

/A,- W (y)dy
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(a3) for a fixed z the process N,(z;-) is a circular complex Gaussian process with

2
O'No

max{p, '} (4-3)

E(N,(z; p)N; (z; p)) =

(a4) W and N, are independent of each other.

For real stochastic prdcesses on an interval T, of a positive time axis, there is a
notion of a Brownian motion process with parameter o?. A real stochastic process
{X() : t € T,} is said to be a Brownian motion with scale parameter o2 if it is a
mean 0 Gaussian process with stationary independent increments and E(X?(¢)) = ot

for every t € T,,. Note that in the case of X being a Brownian motion, have
E(X(s)X(t)) = o® min{s, t} (A—4)

and in fact this characterizes a real Brownian motion process when it is assumed that
the process has mean 0. We now want to generalize the notion of a Brownian motion
process to the case where the process is a complex mean 0 Gaussian porcess. In this
case we say a complex stochastic process {Y(t) : t € T,} with index set T, C [0, 00)
is a complex Brownian motion process with parameter o2 if it is a circular complex
Gaussian process with the real and imaginary parts of Y being independent Brownian
motions with common parameter %

The assumption in (a3) is essentially equivalent to the assumption that N, is a
complex Brownian motion when the index set is inverted in p. More specifically if we
redefine the index set of N,(p) to be {% : p € [pr, pu]} and define the process N, on

this index set as

N, (l) = No(p) ‘ (A-5)

then N, is a complex Brownian motion. This is the essence of the assumption (a3)
and this assumption physically is related to the fact that the amount of thermal noise
is proportional to the length of the aperture and this is inversely proportional to

resolution.
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Now based on the above model, we want to derive the optimal sampling (in resolu-
tion) strategy for discriminating between the hypothesis H, and Hj, or if we think of
I(z; p) as a stochastic wavelet transform plus noise, then this amounts to choosing the
optimal scale parameters of the noisy wavelet transform process. The approach we
have taken, because of the complexity of the problems is to fix the location (or known
in wavelet jargon as the translation parameter) z which we can assume is 0, and
defive the optimal sampling strategy of the noisy wavelet transform process I(p, z)
in terms of p. Of course this is not a fully realistic solution of the original problem
(and the astute reader will also have already noted other unrealistic simplifications
which will be discussed in more detail in the Summary). But we hope by solving
this problem, to be able to shed some light on the analytical choice of the sampling
strategy and to provide some light on setting up and solving the much more complex
general problem of considering all of the pixel locations simultaneously.

As stated earlier, for the sake of notational simplicity we will assume without loss
of generality that the fixed location £ = 0 and thus we are trying to derive a sampling
strategy for discriminating between H, and H; which are no longer a function of z.
In doing this we will be using ideas from Cambanis/Masry (1983), hereafter referred

to as CM. The new hypotheses based on this fixed location assumption are given by
H, (clutter only) : I(p) = \/_/ ( ) (v) dy + No(p) (A-6)
= N(p) |
and
s (target present): 1) = 5 [ (%) 070+ ) dy-+ 2o
- L/ ()gt(y>dy+[f/h() () dy-+ NG
= S(p)+ N(p) (A-T)

where we have actually substituted h(—-) in place of h in the above equations. This

was done since it simplifies notation and it makes absolutely no difference to the final
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results. Also recall that the index set for the process in both (A-6) and (A-7) are
resolutions p in the range [p;, py]. By the above representations, we see that N is a

circular complex Gaussian process with the autocorrelation function

R(p,p') = E(N(p)N"(p")

= KI/ ()W(ydy+N )(\/_/ () )dy+N(p))*]
o ()w (3) ot et -

This is also the autocovariance function of the process S(p) + N(p) under the as-

sumption of H;. The above formulation is quite similar to the problem considered in
CM (1983) with the only differences being that instead of having complex Gaussian
processes, they considered only real Gaussian processes and they made a technical
assumption on the signal process S relative to the autocorrelation function R. Specif-

ically they made the following assumption:

(a5) the signal process S satisfies: 3 a square integrable function f over [py, pu]
such that
Pu
[ Ble.f)f(e)de' = (o). (A-9)

The assumption (a5) (and previous assumptions), imply that even if one knew I over
the whole interval [p;, py], it is not possible to perfectly discriminate between H, and
H,,i.e., between clutter only and clutter plus target. It also implies that the optimal

detector (for a target being present) using values of I across all resolutions in the

range of [p,, p1] is given by
Accept H; and declare a target if R (/pl I(p)f*(p) dp> >T (A —10)
Po

where T is a threshold and R denotes the real part. The above is stated in Cam-
banis/Masry (1983) for the real case and is a straightforward corollary of Karhunen-

Loeve expansion (discussed in Appendix A.4) and some analysis using the expansion
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to determine the likelihood ratio. This is done in detail in Grenander (1980) (cf.
chapter 5). One can think of the test in (A-10) as a matched filter detector.

Of course, in our case we do not have a continuum of data, but rather we must
choose a finite number of resolutions. This motivates the determination of a sampling
strategy for the resolutions which gives detection performance as close as possible to
the performance of the detector in (A-10). Before specifying such a sampling strategy,
we mention an interesting property of the stochastic process {I(p) : po < p < pl}
which is true given some realistic assumptions on the impulse response function A (for
example these properties are true if & or its Fourier transform is a sinc function). The

property is that under certain conditions on the mother wavelet function Ak, have:

I is a Markov process in both the positive and negative directions of p, i.e., the
conditional distribution of I(p,) given I(p1),...,I(pa-1) only depends on I(pn—1) in

the cases of
PL<p2<...<pn (A-11)

or
Prn < po1 <o <1 (A-12)

The latter ordering is probabily the more natural ordering to consider since the
Markov relationship here is saying that if one has a sequence of images where the
resolution is becoming finer and finer, then the conditional distribution of an even
finer resolution image is only dependent on the finest resolution previously consid-
ered. The technical assumptions on h are outlined rigorously in Appendix A.4 and
also given there is a careful derivation and discussion of the Markov property (P).
Note that this suggests an alternative framework from which to investigate, namely
that of optimal sampling of Markov processes for the purposes of detection. This
would be an interesting approach which is significantly different from the approach

presented in this appendix.
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A.1 First Sampling Strategy

In this subsection, we set up a framework for specifying what we mean by optimal
resolutions from a target detection viewpoint. We then use this framework and some
analysis to develop a numerical algorithm for determining the optimal resolutions.
To set up the framework consider a fixed number of resolutions, say n, and we
suppose the objective is to find the optimal resolutions p;,ps,...,pn to choose so
that based on I(p),...,I(ps), we would have optimal detection performance. Before
proceeding, we have to clearly specify what is meant by the term optimal The
framework we will use is as follows. We specify the probability of false alarm to be
some fixed value which we denote by Pr4. For any finite set of resolutions py, ..., px,
there is some achievable probability detection given the probability of false alarm is as
specified. We denote this probability of detection by Pp(£,_) where £, = (P1y---»Pn)-

Mathematically we want to find the resolutions, i.e., the vector ,E,: which satisfies that

Pp(£)) = max Pp(£,) (A —13)

Nn

We denote the righthand side (RHS) of (A-13) by P3. As discussed in CM (1983),
based on assumption in (a5), there is an upper bound on the probability detection Pp
which is strictly below 1. It is essentially the probability of detection for optimal test
given all the resolutions. As discussed earlier, this test would be based on thresholding
the real part of the statistic f I(p)f*(p) dp where f is the function given in (a5). We
denote the maximal probability of detection for this test by P};. As shown in CM
(1983), as n increases, Pp — P}, Tt turns out that the determination of £ which
satisfies (A-13) is exactly equivalent to another criteria, namely that of finding the
resolutions which maximize what is known as the generalized signal-to-noise ratio.
This is discussed in greater detail in Appendix C.2, which is essentially results from

CM (1983) adapted to our situation. For a set of resolutions £, = (p1,...,pa)", we
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will denote the GSNR by G(£, ) and it is defined by

[BUe,) - Ba@)]

Var,(1(7(2.))) (A-14)

6(e,) =

where E; is the expectation operator under Hj, j = 0,1, Var, is the variance operator
under H,, and I(£, ) is the vector [I(p1),...,1(pa)], the term n(I(£,)) corresponds
to the log of the likelihood ratio (after dropping terms which do not depend on I(£, ))

and is given by

n(1(2,) =% (", ))'=7(2,)S(L,)) (A —15)

where X(£, ) is the covariance matrix of the random vector [N(p1),- .., N(pn)]* (which

is the same under both H, and H,), i.e.,
(2(L,))i; = E(N(pi)N*(p;)) 1<4,j<n (A —16)

The interpretation of the GSNR is heuristically simple. It is simply a measure of
the separation of the distributions of the log-likelihood ratio n(I(£_)) under H; and
H,. Based on the maximization of the GSNR being essentially equivalent to the
maximization of the probability of detection, we take an analogous approach to that
taken in CM (1983), where they chose £, to maximize the GSNR. It is useful to
have an-alternative interpretation of the resolutions which maximize the GSNR. By
substitution of (A-15) into (A-14), it is easy to see that the GSNR has a form given
by

G*(L,)=(S"(L)) =7 (L,)5(8,) (A —-17)

where S(£, ) denotes the vector of [S(p1,...,S(pn)]’. The RHS is a quadratic form
where the matrix £~(£, ) is positive definite. Hence it turns out that one can think
of the RHS of (A-17) as an inner product of S(£, ) with itself as long as you think of
the right inner product. This inner product is actually defined in Appendix A.4. Even

more important than this we can think of S(£,_) as a projection of the continuous
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function S in this Hilbert space. Thus we can write the GSNR in (A-17) according

to the following expression:

G*(8,) = IPp Sl (A-13)

where || - ||z is the norm in this more general Hilbert space and P is a projection
operator. For notational convenience we now drop the subscrip’tvnR on the inner
products and norms, since all such refer to this special Hilbert space. This Hilbert
space is known as the Reproducing Kernel Hilbert Space (RKHS) and the nicety of
it is that evaluations of the process at a time instant corresponds to a projection
in this Hilbert space. For the sake of intuition it is entirely appropriate to think
of the projections we will be describing as occurring in finite dimensional space. In
Appendix A.4, we give a more thorough discussion and background on RKHS’s and
their applications.

Based on (A-18) and previously quoted results (outlined in Appendix C.2), one
optimal algorithm (for resolution selection) proceeds by selecting 2, Z = (pS15--3P%)
as the n resolutions which satisfies

G*(L,) = supG*(L)

Nn p

Nn

= s;p(s*(gn))‘z—l(gn)s (£,)- (A-19)

Ny

The above maximization is over £, , i.e., over n-dimensional space and in every it-
eration of this maximization, one must compute an inverse. Both of these factors
suggests that for moderate to large values of n, the above maximization may be dif-
ficult to carry out numerically. This provided motivation in CM (1983) to consider
alternative schemes for selecting resolutions which, though not optimal for any finite
number of resolutions n, are optimal in an asymptotic sense. A number of schemes
were presented depending on the properties of the autocorrelation function R, and
one of the cases they considered included the case of noise process being an indepen-

dent increments mean 0 Gaussian process. As proven in Appendix A.4, if we assume
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that & is sinc function, our noise process corresponds to a circular complex Gaussian
process with independent increments, but not stationary increments. We conjecture
that the sampling results presented in CM (1983) have very close analogous results
in this case. Thus we present the results in CM (1983) suitably modifed for our case
as a heuristic algorithm which is likely to have some similar asymptotic optimality
properties as stated in CM (1983), though some further research is needed here to
verify that this extensioﬁ is really valid. The procedure is to choose a probability
density function ¥ whose support is in the interval [p;, p,]. Then at stage n, we select
n quantile values {p%,,...,pl,} where

/pp;jgb(t)dt=j—1 1<j<n. (A — 20)

7 n

The result proven in CM (1983) (for the real case) is that

u 2

n¥(P} — PB) > K m” %@L dp (A—21)

where K is a known constant and f is a known function related to the autocorrelation

function R. In CM (1983), they derived a sufficient condition for the selection proce-

dure to be asymptotically optimal and this condition was that 3 be proportional to
(BIFF.

As stated earlier, we conjecture that a result very close to the above is in fact

true, and so we view the above as a useful heuristic for deriving a simpler resolution

selection algorithm. One technical snag is that it may be difficult to identify exactly

the function f which satisfies the integral equation given by

[ RS do! = S(e). (A-22)

But since we only want to know the approximate shape of f in order to derive a 3

which is approximately optimal (i.e., select ¥ proportional to (5|f |2)%), it probably
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is useful to find a numerical approximation for f given our knowledge of R and S.

This we can easily do by discretizing the problem, i.e., choose py,...,p, where
Pj=P1+]—(&‘n_—pI) 1<j<n (A —23)

and then noting that (A-22) after discretization can be reformulated as

R(pi,p1) -+ Rlpr,pn) | | f(p1) S(p1)
Pl — Pu . . . . .
- : : : : ~ : . (A—24)
R(pn,p1) -+ Rlpn,pn) flpn) S(pn)
Now one just solves this equation numerically for f(p1),. .., f(ps) and then use these

values and some numerical fitting routine for determining an approximation to f.

A.2 General Sampling Strategy

In this section we generalize the sampling strategy to take into account the processing
costs. We assume that the costs of processing are linearly inversely related to resolu-
tion. However it should be mentioned that our discussion could be carried over to a
more general class of loss functions (than linear in the inverse of resolution). To set up
the framework we need some notation. For the n-dimensional vector of resolutions,
P . we denote the linear span of the autocorrelation functions {R(p;,-); 1 < j < n}

Nﬂ’

by L(£,_). We now assume for a fixed n that we want to find resolutions £, which

minimize

, 1
KIS~ 1Py g ,SI) +E X

= K (ISIP - (57(8, )L, )S(8,) + KZ ;1— (A-25)
= Ln(ﬁn)
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-

or equivalently are trying to maximize
(52,2252, - KX (A~ 26)
j=1FrJ

Here K, K' are positive constants which reflect the proportional costs of the two

differences. Now the first term of ||S||? — HPL( p S |2 converges to 0 at a rate which

is proportional to the rate at which P}; — Pp converges to 0, as was stated in the
previous subsection. Because it is easier numerically to handle (than P} — P3), we
base our loss function on ||S||* — “PL( p N)S ||?>. Since we can divide the loss function
by the constant K’ and not change its basic structure (optimal resolutions remain the
same), we can without loss of generality assume that K’ = 1 and so we only need to
specify the constant K. Now note that as n gets large the loss function goes to oo,
so there is actually some optimal number of resolutions n. and corresponding set of

n. optimal resolutions pj,...,p;, which satisfies that

La(pi, .- -, p5,) = inf i;,lf La(£,) (A—27)

~a

This set of resolutions, which we denote as a vector ﬁ:‘, then represents the optimal
set of resolutions across all possible finite sets of resolutions after taking into account
the probability of detection and the costs of processing each image. Now K is related
to how one views costs of having a lower pfoba,bility of detection versus paying for
more processing of images, but as stated earlier the first term in the loss function,
of ||S||%> - ||’P|_( p n)S |I? is asymptotically proportional to the difference P} — Pp( L)
which is the maximal probability of detection minus the probability of detection based
on using the resolutions py,...,p,. This is described in more detail in Appendix C.2
where the precise proportionality constant is given and this may be useful for choos-
ing the constant K. For this loss function and for n € N, let £° = [p;,...,p0,]"
be a vector of resolutions which minimizes the loss function Ln(£, ) as a function of

n. Again it should be noted that the numerical determination of £’ can be difficult
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for moderate to large values of n for identical reasons as mentioned in the previous
subsection. Thus in the context of moderate to large values of n, it would be useful
to again derive simpler alternative selection algorithms as was done in the previous
subsection for the special case when the wavelet transform process had independent

increments. This would be a good area for future research.
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A.3 Solution to Resolution Sampling Strategies

Introduction

This section discusses the optimal selection of a subset of resolutions from a multiresolution signal
to maximize the detection probability. We will call this a resolution sampling strategy. It is not pos-
sible to use every resolution, because without an iterative structure in place, the dimensions of the
problem quickly become too large. A solution to this will be discussed later. The organization of
this section is as follows: First we will pose the general problem of detecting a known signal in
additive noise and discuss the solution. Next, an approach based on the work of Cambanis and
Masry (1983) for selecting a discrete set of resolutions at which to form the detection statistic is
described. The criteria to evaluate performance of the detector using the subset of resolutions are
also provided. Both the continuous and discrete solutions are provided. Then, the multiresolution
SAR problem is introduced, and the form of the covariance function (which is required by the so-
lution formulation) is derived. In addition, the Markov property is verified and the remaining con-
ditions required for the derivation of the sampling strategy are developed. An example target is
described next, and the sampling strategies using both the continuous and discrete solution strate-
gies are obtained and compared. Finally, the performance of the method based on the Cambanis
and Masry approach is compared to other methods of selecting sampling strategies, and the satu-
ration behavior as the number of resolution samples increases is investigated.

Problem Statement and Solution Development

As before, we will denote the complex valued SAR image at pixel location x € 9?2 which takes
into account resolution p by T (x, p) . We would like to consider the problem of detecting a mul-
tiresolution signal TS (X, p) embedded in multiresolution additive noise Tc (x, p) ata given
location x = X overa given resolution interval p, <p <p . 1ie.,

H :T(xp) =T (xp)+T, (xpP).P;<P<p,
Hy:T(x,p) =T (xp).p;<P<pP,

The covariance of the noise process is denoted R, (p, p') , and
%o

R, (p.p) = E[T (xp)T* (5 p)]|)_€=3E0

The optimal test statistic is
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Pu
¢ = Jf(xo, P)T (x4 P)dp
P

where f(J_cO, p) is the generalized multiresolution matched filter found by solving the integral
equation p

T,(xp0) = [R, (P, P)f(x PP
P
When the solution is to be found in the discrete domain, the process T (J_cO, p) issampled at N

points (a method to select the points will be described below) {p 1Py P N} to form the pro-
cess

t
T(xpP) = {T(xpP)sT(xpPp)s - T (X5 Pp) T -
The test statistic, denoted @y to indicate its dependance on the N sample points, then becomes

where

f = Ry, (9 P) T, (5, P)

ande - (k,i),i,j = 1...N istheinversematrixofo (PHp),ij=1...N.
0 |

To find the optimal set of {p.} directly would entail a large dimensional search over all subsets
of N resolutions. Cambanis and Masry (1983) show thatif R (p, p') is notdifferentiable on the
diagonal of [p pP 1 x[p pP ] , then selecting the N quzhtiles of a function h* (.xo, p) ,de-
fined by " .

W=

h* (%, P) o< [B (% p)f (% p)]
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will result in an asymptotically optimal solution for the number of resolutions being used. The
function 3 (.z_co, p) is given by

B(-&O’ p) = R)_CO'(P, p _O) _R._X_fo'(p’ p +0)

where
R_"(p,p) =——aR (p,p) .
X dp' %o

If the noise is stationary,

dR
o

5 X dRJ_co
dp

o dp |o*

Cambanis and Masry also show that two measures of performance are monotonically related:

P d (@) , the probability of detection for the detector ( at a fixed false alarm rate 0., and,S (@) ,
the generalized signal to noise ratio of the continuous-resolution optimal detector @. S (@) is
defined by p

5% (9) = [T, (apP)f (xp P dp

P
This relationship between the two measures is given by

-1
P,(9) = ®[S(¢) -0 (1-)]
where @ is the error function. In discrete form

5% () = T's (xg PR, (P, P) I (g, P) and
P,(0y) = @[S(op -0 (1-0)]

Multiresolution SAR Sampling Problem Solution

For the SAR imagery problem, we can derive the functional form of the covariance function
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R (p, p') , where Tc (x,, p) is the multiresolution signature of the clutter after it has passed
thr8ugh the SAR imagery system. In addition, we can show that the process is Markov, and is re-
lated by a transformation to a Brownian motion process.

Assuming that the system has impulse response & () , which is a sinc function, then
: 1 y y
R, (0rp) = —= [ 2 Jie( 3 )ay
%o JppY \P p

We know that the Fourier transform of 4 (y) is an indicator function, denoted h (u) , and also
that

(2) o
~h| = | & h(pu)
p \p P
where the double-sided arrow denotes Fourier transform. So,
' - [ Y
Ry (09 = =22 ) = w52 )5 ()

and thus by Parseval’s Theorem,

R, (p,0) = PP [h(pu) hi(p'u) du
Now, for p < p' via properties of the indicator function,

R;_co (p,p) = JPFJ-il (p'u) du
| RJ—‘O (p,p) = A/gjp' (i’\l (p'u))du

S [ P
R, (p.P) —J;jh(u)du

For p >p'

R, (p,p) = «/p_p'jfi(pu)du
Xo

' — B' 7
R, (P.P) = J;jp(h(pu))du

N Y P
R, (PP —[pjh(u)du
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Now, assume that 4 (1) has unit energy, i.e.,

Jlﬁ (w) |2du =1

and therefore let

A= .[13 (u) du

AJE,,<'
pPP

Ry, (PP) = Ap=p
AA/-E—', >p'
o p>p

Note that R (p, p') is continuous at p = p', but it is not differentiable.
X,

Then, the covariance R_ (P, p") is given by
X

To demonstrate that the process is Markov, the correlation function must satisfy a scaling law con-
dition with respect to resolution [Wong and Hajek]. Let p; <p, <p;. Then,

Pl
%L U3 P3 R (p2’p2)
A
Pz

(-4) Jp :

Thus, the process is Markov.

To find B (2 P) , note that

3,p<p
Rt ' _ 2J5’
Zo(p’p)— 0,p=p
_é._ p>p'
2.pp"
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therefore

-4
Bxyp) =3

Now, we will determine the transformation which maps the process T ()_co, p) into Brownian
motion. Since the process T, (X, p) is Markov, its autocorrelation fanction R L (P p') satis-
%o

fies the equation
R’-‘o (u, t) R}_[o (t,5)
R,xo (t,¢)

R%(ms)= ,is<t<uSpu

Letting # = P, and rearranging,
R_(p,s)R_ (t1)
4 U %

= k
R, u g (s) k()

RJ_C0 (t,s) =

where

g(s) =R, (p,s) and

R)_C (¢, 1)
k - 0
DR (0,0
Let T be defined as
_ &)
T(1) )

and Z as

Z(p) = k(P)Y(x(p)).pe [ppp,l-

where Y is a circular complex Brownian motion process. Then,
R,(p,p) =R, (p,p)
0

We have described an invertible transformation which generates a process with the same distribu-
tion as the one we have been considering from a Brownian motion process. Thus, we can use the
inverse transformation on the original process to generate a system equation which is driven by

Brownian noise. The integral equation for this system will be easier to solve, and the solution can
be transformed back to give a solution to the original problem. The transformation proceeds from
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the original equation

T(xpp) = T (xpP) +T (x5 P)

T(;O,T_l(p)) 7}(&0,1_1(P))
k) k()

to

+Y (x4 P)

or
T(xp ) = Ts(xP) +Y (5 P)

Th1s problem can be solved for f (X, P) via the integral equation, the optimal sampling strategy
{ p } can be found via the procedure outlined above. This transformed set of resolutions can then
be converted to the set { P; }.

The transformations kK (p) and T ( P) can be determined using the equations glven above, which
are defined on the range P; <P, p'< P, (and the transformed range pl <p,p'< pu)

' - A ' - _P__
g(p) = R, (,p) = A

u

o

R , 3
k(p) = —-———ZO (f’ p) = J:l;
R, B,p)  Np
_8 _ 4P
T(p) () 5,
So, )
. sttt (p) p ( p
TS(-xoa p) = k(p) = ‘:)ZTS EO’A%)

Three Point Target Example

It is instructive to attempt to find the generalized matched filter, f (J_co, p) , and the optimai sam-
pling strategy {p;},7 = 1.. .N for a simple target and a given N, and compare the results from
the continuous solutlon to those obtained from the dlscrete solution. Consider the case of three
equal amplitude colinear scatterers at locations x, i = 1.. .3, all at range y = 0 and equidistant
from each other. The target ¢ (X, ¥) can be written as
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3
Hxy) = ) 8(x-x)8()

i=1
The multiresolution signature of this target at any position x can be evaluated using the SAR sys-

tem equation, and is 2
3 27x;

o (x-x,
T (x,p) = Ze T sinc( 5 ')

i=1

The magnitude of the multiresolution target signature is shown in Figure A-1at x, = {0,0}.
Figure A-2 provides an example of several sample multiresolution clutter signatures for compari-
son. Both plots show magnitude versus resolution.

In this simple case, the integral equation for the solution f (X, p) is difficult, if not impossible to
solve. We will use the transformation described previously to solve this problem.

After applying the transformation, target representation at x = 0 thus becomes

3 i21txf
R AT, -Apx.
T (xpP) = rp—ze s sinc —!
pu. pu
i=1
The integral equation becomes 5
T (xpP) = IRY(p, p)f (2 P) dp’
P

where
Ry (p,p") = min(p,p’)

We can rewrite the integral equation using the expression for RY (p, P)
p ﬁu

T (xyP) = Jp'f‘(;co, p)dp' +p f F(xy 0 dp'
P P

Taking the partial derivative with respect to P of both sides gives
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Figure A-1: Target magnitude across resolution.
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Pu P
a r . 7 ' ' 7 7 ' '
3575 G ) = of (g 0) + [Flay 00 do'=pF 5 p) = [#ag e ap
p P
Taking the partial derivative again with respect to p yields
2
9% A .
'a_p'Ts (-EO’ P) = _f(-EOa p)
To complete the solution, the quantiles of
1

. A W) 3

h™ (x5 P) = |B(x P)S (20 P)
where [3 (X5 P) = —1 (determined from Ry, (p, p') ) must be determined. Substituting the re-
sults from the solution to the integral equation

1

. a2 ) 2113

h (-507 p) = ('a?Ts ()'CO’ P) ) ’
which can be shown to be

( - — - 2 PAY
AR AApxi 2 5 cos A.pxi 3
Z Ar, u )| A% Jp 1 u Ax;
e + +
Q=1 [‘Af’xi] 2 2,eh,| (:’f_%] P,\PB,
\ ‘ B pu pu pu | )

The quantiles {ﬁl
(1.2, 1.6,2.3,3.2,4.9, 10.0).

.} of this function were calculated numerically, then transformed back, and are

For the three point scatterer case, the discrete solution was calculated directly from T'_(x,, P)
and Rx (p, p') as(1.1,1.2,1.6,2.3,3.4,10.0). The GSNR and ROCs were calculated as described

above #hd are shown below in Figure A-3.
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Figure A-3 shows the ROC curves (detection versus false alarm probability) for the two solutions
described above - exact solution to the three point scatter problem (solution of the integral equa-
tion) versus discrete solution (inversion of sampled covariance matrix to determine f). The original
sampling density of the discrete covariance matrix included a range of resolutions from 1 to 10,
sampled every 0.1. The exact solution does outperform the approximate solution, as was expected.

Comparison of Cambanis/Masry Approach to Other Sampling Strategies

Figure A-4 show the performance of the discrete Cambanis/Masry method to determine a sampling
strategy for the three point target problem versus the multiresolution sampling strategy used in the
previous project (called multires) and a dyadic splits, or wavelet strategy. The dyadic splits are de-
termined as 1 ft., 2 ft., 4 ft., etc. The number of resolutions (N = 6) used for each strategy, and the
signal to noise ratio (determined by A) were held constant. Use of the Cambanis/Masry approach
to determine the sampling strategy resulted in increased performance, especially over the wavelet
sampling approach.Saturation Behavior of Cambanis/Masry Sampling Strategy Approach

Figure A-5 illustrates the saturation behavior of the discrete version of the Cambanis/Masry sam-
pling strategy. A new “optimal” sampling strategy was generated for each value of N, the number
of resolution samples used. For each case, the finest resolution used was 1 ft., the coarsest resolu-
tion used was 10 ft. For the N = infinity case, all 91 available samples were used. Little improve-
ment is seen for N’s larger than 12, however there is significant improvement beyond the single
resolution case (N=1),

Saturation Behavior of Dyadic Split Sampling Strategy Approach

Figure A-6 shows the saturation behavior of the dyadic split/wavelet approach to sampling (the
wavelet sampling strategy was fed to the same GSNR/ROC machinery as if was the sampling strat-
egy selected by the C/M mechanism). Performance saturates at lower values of N (N= 6 versus N
= 12) for the wavelet sampling strategy, and the same levels of performance are not achieved. Note
that for this strategy, each increase in N uses a coarser resolution, and little information is gained
to aid performance as resolution becomes coarser.
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Figure A-3: Comparison of ROC curvgs between continuous/exact and discrete
solutions for the optimal sampling strategy.
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Figure A-4: ROC curves comparing different sampling strategies at a fixed
number of samples..
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Figure A-5: ROC curves for optimé?sampling strategies with varying
numbers of samples.
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Figure A-6: ROC curves for wavelet sampling strategies with varying
numbers of samples.
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A4 Summary

In this appendix we.have given a methodology for choosmg the optimal resolutions
from a target detectlon criteria. We did this under two cases; the first case specified
that the only cnterley was to maxmnze the probability of detection and the second case
specified a criteria which included the maximization of the probability of detection and
a minimization of pfocessing The technical approach was to model the resolutions
from a wavelet transform v1eWp01nt and allowing the scale to be over a continuum and
restricting the samplmg location to be at a fixed point. We provided an algorithm for
determining the optimal resolutions under both criteria and we stated some rigorous
properties of these optimal resolutions. We Eaulso derived some interesting properties
of the wavelet tra,nsform processg representing our different resolution images.

Recommended areas for future research are:

(i) Generalize thé original model to include a random phase on the target, i.e.,

assume a model where
1 (o — v\ . ﬁ ‘.V Z
I(z;p) = ﬁ/h j( ) (W(y) + g:(y)e™) dy + No(z3 p) z €A,
| | (A —28)
where V is random variable with uniform distribution over (0,27) and is independent
of the clutter process W and the thermal noiée process No. This model is much more
realistic since we néver expect ’éo know the phase of the target reflectivity (would

require precise knowledge of the radar system and collection geometry).

(ii) In the approach in this appendix, we only looked at one pixel location and
changing resolutions at that locatlon The more realistic scenarlo is to look at optimal

resolutions based on con51der1ng the data at all pixel locatlons i.e., based on
{I(z;p): z€ X} ; pr<p S pu. (A —29)

This would mean cons1der1ng the full wavelet transform both in the scale parameter

and in the translatlon parameter One of the problems here is that the number of
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pixels is different for different resolutions and so there is a problem comparing images
of different sizes. A possible starting point for solving this problem is that of break-
ing up the scene into small square subpatches which are much smaller than the finest
resolution, and then approximate I(z; p) as a linear combination of these subpatches.
This would be a sort of a discrete wavelet transform model-based approach to the
multiresolution problem. Another possible approach to this problem would be to
look at different ﬁletrics relating the probability distributions of two different images
at two different resolutions (metrics should be closely related to the probability of

detection), which don’t need the same number of pixels.

(iii) Investigate simple resolution selection algorithms for the general case of a loss
function incorporating the costs of processing. As discussed earlier, there are such
algorithms in the case of no processing costs when the general noise process N has

independent increments (true if impulse response is a sinc function).

(iii’) Derive simple resolution selection algorithms under the framework given in
(ii).

(iv) Develop an analgous framework (including simple algorithms) to that pre-
sented in the appendix in the case where PIT) = 1. Recall that we used the generalized
signal to noise ratio (GSNR) and the justification for doing so was that the resolutions
which maximize this (GSNR) also are optimal from a probability detection criteria.
But this depended on the assumption of (a5) which implied that P} < 1. In many
cases (e.g., such as delta functions as part of the target), this does not hold and it

would be of interest to research what happens in this more general framework.
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Appendix B Properties of Noisy Wavelet Trans-
form

In this appendix, we establish a couple of interesting properties for the I process
which were given in Section 2. As stated there, we can view [ as a noisy stochastic
wavelet transform. The first property we present is that the autocorrelation function
'R is continuous provided the mother wavelet function A is square-integrable, which we
assumed it was. The second result we prove is that under some technical conditions
on the function h, the wavelet transform process at a fixed translation is a Gaussian

Markov process in the scale parameter. We now state explicitly the first result.

Proposition Appendix B.1 Suppose h is square-integrable and R is the autocor-

relation of the wavelet transform process I. Then R is continuous.

Proof (sketch). The autocorrelation function is given by

where the second term represents the autocorrelation of the additive thermal noise
process and the first term represents the autocorrelation of the integrated clutter
process (convolved with scaled version of k). Now to prove the result it suffices to
show that the first term is continuous in the argument (p,p’). This can be done by
a very common analysis trick whereby we approximate h by a function A, which is
continuous and has compact support. We then use this trick and the Cauchy-Schwarz

inequality to prove the desired result. The details are messy and hence are omitted.

We now state a second result on sufficient conditions on h for ensuring the Markov
property for I in both directions and we do this precisely in the form of a Proposition

and then we give a proof. But before doing so, we need a preliminary result which
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is essentially given in Wong/Hajek (1985), but which we state as a Lemma both for
completeness and because we do need to adapt their result to the case of circular

complex Gaussian processes.

Lemma Appendix B.2 Suppose 0 < t; < t, < 0o and suppose X = {X(t) : ¢ <

t <t} is a circular complez Gaussian process which satisfies that,
R(t,1) >0 H<t<t, (B-2)

and that
p({s: i< s<ty R(t,s)=0})=0 Vi (B-3)

where yu is Lebesque measure (for intuition, notice that this technical condition is
satisfied if for every t the function R(t,s) = 0 for at most a countable set of s’s).

Then the following conditions are all equivalent:
(i) X is forward Markov.
(it) X is reverse Markov.

(iii) the autocorrelation function R satisfies that

_ R(u,t)R(1,s)

R(u, s) = 00) ti<s<t<u<t,. (B—4)

(iv) X has the same distribution as Z where Z(t) = f(t)Y(7(t)) where f is a de-

terministic function, Y is circular complez Brownian motion, and T is non-decreasing

function from [t,t,] to [0,00).

Proof. By the general theory of Markov processes (cf. Wong/Hajek (1985), pp.
65), it is well-known that (i) and (ii) are equivalent. Thus we only need to verify that

(i), (iii), and (iv) are equivalent. Suppose (i) is true and consider s < ¢ < u. Then

R(u, s)

E(XWIX () = 37

X(s) (B-5)
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by Lemma Appendix B.3 which follows. Also we have that

E(X(u)|X(s)) = E(E(X(u)|X(s),X(t))|X(s)) prop. of cond. expectations

= E(E(X(u)|X(t))|X(s)) by Markov property of X
_ R(uvt)
- Rl B )

R(u,t) R(t,s)

= . B-
R(i.t) Bis, ) ) (B-6)
Since X(s) is non-degenerate, (B-5) and (B-6) imply that (iii) holds.
Now suppose (iii) is true. Then we first claim that
R(t,s) #0 for every s,t (B-17)

To see that this is true, suppose the contrary, i.e., suppose that 3 s < u such that
R(u,s) =0. (B-28)

But the hypothesis in (iii) implies that

R(u,t)R(t,s)
W—O Ve (s,u). (B-9)

But this would imply that either R(u,t) = 0 or R(t,s) = 0 for every t € (s,u), and it
is easy to show that this violates the assumption contained in (B-3) and hence have

a contradiction. Thus we have verified the claim expressed by (B-7). Now

po = Rt
= g(s)f() (B-10)
where
g(s) = R(tu,s) (B —11)
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and
R(t,1)

= -1
0= 7 B-12
Now let 7 be defined by
g(t)

() = X te[tyty B-13
( ) f*(t) [ 1 ] ( )

Clearly 7 is real and positive since
g®)f(t) = R(t,t) >0 Vt. (B —14)

Finally 7 is non-decreasing since for s < ¢, have

g(s)
) = 5
_ 9(5)f@)
f*(s)f(?)
R(t, s)

f(8)f(?)
R(t,t)R(s, s)
\ (f(s)f(2))?

_ [awiwee) s
\~ (FEFOP

g(s) | g(®)

f(s)\ f2)

= \/7(s)r(t). (B-15)

by Cauchy-Schwarz ineq.

IA

|
=

Now let
Z(t) = fO)Y(r(?)) t € [t ta] (B —16)

Clearly Z is a circular complex Gaussian process and for s < ¢,

E(Z*(5)Z(t)) = f()f@EX"(r(s)Y((t)))
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= [ (s)f(t)7(s)
= g(s)f(t)
R(t,s) (B-17)

Hence (iv) has been verified.
That (iv) implies (i) is immediate since Y. has independent increments and so
automatically is Markov, and by recalling that f is a function which which never

vanishes (i.e., never equals 0).

Lemma Appendix B.3 Suppose (U,V) is @'*-valued random vector which is circu-
lar complez Gaussian with Ryy = E(VU*) and Ryy = E(UU*). Then

(a) the random vector

y - Bvoy (B - 18)
Ryy

is independent of U.
(b) the conditional ezpectation of V given U satisfies that

E(V|U) = g—ZZU. (B - 19)

Proof. (b) is an easy consequence of (a) and (a) is well-known result obtained by

recognizing that any linear combination of (U, V) is again circular complex Gaussian.

We now state a couple of lemmas and give a definition before giving the main
result (Proposition Appendix B.6) of this appendix, which are sufficient conditions

for the wavelet transform process to be Markovian.

Lemma Appendix B.4 Suppose X and Y are two independent Markov processes.
Then X +Y is Markov.
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Proof. Easy consequence of the properties of conditional expectation.

Lemma Appendix B.5 Suppose {X(t) : 0 <t <t < t, < oo} is a circular
complex Gaussian process which is Markov and whose autocorrelation function R
satisfies that

R(t,s) = R(s,s) >0 s<t. (B —20)

Then there exists non-decreasing function n from [t;,t,) to [0,00) such that X has
same distribution as the process {Y(r(t)) : t <t < t,} where Y is a complez

Brownian motion process and in particular X has independent increments.

Proof. This is a straightforward corollary to the proof of Lemma Appendix B.2.
Specifically it suffices to show that the function f in that proof is 1. But recall that

_ R(t,1) .
f@t) = R(tut) by def. of f in proof
R(t,1) :
R(L,1) by the hypothesis

Definition/Notation. For square integrable function f from R? to €, we denote
the Fourier transform by f. We let H denote a special class functions defined by h € H
if and only

h(yla y2) = Clyl‘klly2lkzl[alﬁﬂ(yl)l[az.ﬁz](yz) Y1,Y2, € R. (B - 21)

where C > 0, ki, k; > 0 and a; < 0 < B and o2 < 0 < f2, and

vl 1 yi€laB .
Laj,8,1(¥5) = { 0 otherwice i=1,2. (B —22)
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Proposition Appendix B.6 Suppose have the wavelet transform process I (under

H,) where .
10)= [ (L) )+ atas+ mi) B2

where W is Gaussian white noise with parameter o? and N, is a circular complez
Gaussian process. Assume the following:

(i) W and N, are independent.

(i) the process N,(z : -) is a circular complex Gaussian process with
ok

P 1 < psp' < P B—24
max{p, p'} 8 ( )

E(N,(z; p)N; (z;0")) =

(iii) either h € H or heH.
Then :
(a) I is a Markov process in both the positive and negative directions.

(b) in the special case of either h or h are equal to Cliay 8] (¥1)11as,8,) (y2), then I

has independent increments.

Proof. Let V be the process given by
y .
V(p) = f h (;) W (y)dy pr<p < pu (B —25)

By the independence of V and N, it suffices by Lemma Appendix B.4 to prove that
V and N,, individually, are Markov. But N, is Markov since by assumption it has
independent increments (this was discussed in section 2) and by invoking Lemma
Appendix B.2, (iii). Now to prove that V' is Markov, we will show that the assump-
tions specified by Lemma Appendix B.2 hold and also that condition (iii) in Lemma

Appendix B.2 is true. Hence it now suffices to show that

R(p,p') #0 for all p,p’ (B —26)
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and that (B-4) holds. It is easy to see that the autocorrelation function for V, Ry, is

Rv(p,p) = o} / h (%) h* (%) dy. (B —27)

Assume that h € H, i.e.,

given by

h(y1,¥2) = Clys|™ [yl 1oy 6:1(¥1) Lo 51 (¥2) y, e €ER - (B—28)

where o3 < 0 < 31, ap < 0 < B2 and ky, ke > 0. Then by (B-27) and the above form
for h, we see that (B-26) is true. Now let p; < s < ¢ < u < p,. Then

Ry(ws) = [ h(ﬁ) % (2) dy

0;C? 2k 2k Y
= (us) k1+k2/ly1| 'yl 21[011ﬁ1]( )1[°‘1n@1] ( )1[az,ﬁ2]( )1[a2,52]( ) dy: dy,

o202 _
- (us) g+k2 H/ > ;[ dy; T(B—29)
Also have '
Ry(u,t)Ry(tys) _ [h (&) b= () dySh (%) b (£) dy
Rv(t,t) | flh (yl)lz dy/I
20 (Tl el sl dys) (T S8 sl dyj)B 50
RO T I .

By (B-29) and (B-30), we see that (B-4) is satisfied in this case. We omit the proof
for the case that h satisfies b € H. It essentially just uses Parseval’s theorem and
then invokes the equality just proved. This then proves (a).

To prove (b), since N, has independent increments and is independent of V, it
suffices to prove that V' has independent increments. First consider the case where h

is as above with k; = k; = 0. Then by Lemma Appendix B.5, to prove the result, it

suffices to show that
Ry(u,s) = Ry(s,s) u>s. (B-31)
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But this is immediate by inspection of (B-29). Again the case where A has the above

form is handled by Parseval’s theorem.

Remark. The above result shows that in the case where h is a sinc function
(i.e:., represents the Fourier transform of a square aperture) or A is a rect function,
our wavelet transform process, I, is an independent increments Gaussian process. By
the‘proof given above, we have actually shown something slightly stronger. We have
shown under the hypothesis assumed in part (b) of the Proposition, that I is a time
scaled complex Brownian motion. Specifically there exists a non-decreasing function 7
frorh [p1, pu] to [0, c0) such that I(p) has the same distribution as the process Y (n(p))
where Y is a complex Brownian motion. For some desired extensions of results given
in ﬁhis appendix, this assumption of k or its Fourier transform being a rect function
may provide us with a nice framework for achieving those extensions. There is a lot
known about Brownian motion and its properties, and there is a lot known about
doiﬁg statistical inference for the case of a signal in Brownian motion. Our comment

here is simply that this may be very beneficial for future research.
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Appendix C Reproducing Kernel Hilbert Spaces
Representation

The purpose of this Appendix is to give some background on Reproducing Kernel
Hilbert Spaces and how they can be used to represent arbitrary second order stochas-
tic processes. This representation turns out to simplify and make transparent many
arguments (even thought at first glance this might not appear to true). This repre-
sentation is used several places in the main body of the appendix and also is used
in the next appendix where we discuss and verify some properties of the generalized

signal-to-noise ratios stated in subsections A.l and A.2.

Background. We suppose that X = {X; : tel } is a second order stochastic

process with mean 0 and covariance function
R(s,t) = E(X(s)X*(t)) s, tel (C-1)

where I is an interval in R. Note we are allowing for the possibility that X is
C-valued. We actually discuss two representations; the Karhunen-Loeve expansion
(K-L expansion) and the reproducing kernel Hilbert space representation (RKHS

representation). We first make some notes with regards to these representations.

(a) The K-L expansion is applicable when
//(R(t,s))2 dtds < oo. (C-2)

(b) The RKHS approach is applicable in general, but in these notes we only give
this representation under the conditions invoked for the K-L expansion.

(c) All of these representations induce an isomorphism between the Hilbert space
generated by linear combinations of {X(t) : ¢t € T}, Hx, and some other Hilbert
space. One of the main purposes of doing this is that it allows one carry out certain

projection operations in Hx by trying to carry them out in the other Hilbert space
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where they may be much easier and/or transparent) and transfer them back via the
y

isomorphism.
(d) Much of the material in these notes are contained in Grenander (1980) and

Wahba (1990).

C.1 Karhunen-Loeve Expansion.

Here we suppose that R is continuous and that
/ / (R(s,1))?ds dt < co. (C—3)
Then it is easy to show that the linear operator of
é € L2 —)/R(s,-)¢(3) ds € L? (C—4)

is bounded and compact. Thus by Mercers Theorem (cf. Grenander’s Abstract In-
ference), we see that there exists continuous orthonormal functions ¢, ¢2,... and

eigenvalues A; > A2 > -+ > 0 such that
/ R(s,)é(s) ds = Medult) keN, teR (C—5)

R(s,t) =Y Mide(s)di(t) s,t €R (C—6)
k

where the convergence is uniform over compact sets and
/ / (R(s,t))?dsdt = ¥ X2 (C-7)
k

Now let

Z = / X(8)du(t) dt keN, (C~8)
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where the integral exists in the L% sense. Then using the above conclusions of Mercer’s

Theorem, we see that Z;, Zs, ... is a orthonormal sequence of random variables and
X(t) = 3 Ve Zude(t) tel (C-9)
k..l
where the sum on the RHS exists in the L? sense.

Remarks. (a) It is easy to show that Hx C Hz and in the case that {¢x} forms
a complete orthonormal basis then we have equality. Thus in this latter case, it turns

out that we have found a countable complete orthonormal basis for Hx, namely {Zz}.

(b) We have to find those ¢’s by solving the integral equation.

(c) Under the conditions specified in (a), we see that we have an isomorphism

with £2, since Hx = {; axZ; : « € £} and so the isomorphism map is

acll o Eaka. (C -10)
k

C.2 Reproducing Kernel Hilbert Spaces

Here we again suppose the same framework as in the K-L expansion. Now we let
For f,g € H;, we define the inner product by

(f;g)l — E (fa ¢k><g7¢k>. A (C _ 12)

k Ak

Proposition. (i) (Hi,(,)1) is a Hilbert Space.

(i) f € H, implies f is continuous.

106




(iii) If f € Hy, then
(f,R(t,-) = f(?) feH, teR (C-13)

(iv) H; and Hx are isomorphic under the extension of the mapping

K K
Z akX(tk) 4 Z akR(tk, ) (C - 14)
k=1 k=1

Remark. The above is essentially proved in Wahba (1990). But the verification

of (iii) is quite easy. In particular

(f,R(t,")) = i<f’¢k>(1;(t")’¢k)
k=1 k

- i {f, ¢k>2?11:\\j¢j(t)(¢j, )
k=1 k
= Y (f, dr)or(2)

k=1

= f().

Also to support the isomorphism statement, we note that

(X(s), X(1)) = R(s,1)
= (R(s)')7R(t7')>

and we then can use the linearity/continuity properties of the inner products to show

the isomorphism.

Remark. One of the main reasons to set up the RKHS approach can be motivated
by trying to set up another Hilbert space isomorphism and see why it is not the right
embedding. Specifically suppose we tried to set up an identification with L? by taking

fer— / FOX () dt (C - 15)
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and associating the inner product of

(£,9)= [ [ F(s)g(t)R(s, 1) dsdt. (C-16)

This last expression is truly an inner product and it is true that

£(([soxwe) ([o0x®d)) = f.an.  ©-1)

We should note that (,); is truly an inner product modulo one small detail that it
may be possible that for (f, f)2 = 0 without f being 0. This small discrepancy is
insignificant. However there is another detail about this identification which is not.
Specifically this identification will not exhaust Hx, i.e., not every element in Hx can
be represented by a stochastic integral given by f f(¢)X(t) dt for f € L*. The reason
for this is intuitive by the following argument. Let Z;, Z,,... be the orthonormal

sequence as given in K-L expansion and let a € £2 be such that

Z-oﬁ%——oo (C—-18)
k o

Since A\; — 0, this is always possible. It will turn out that there is no way to represent

Z € Hx by an integral [ f(¢)X (¢) dt since

> > #i(t)
kz=:1 aZe =Y oy / %\_,C—X(t) dt. (C—19)

k=1

But we see that Y 52, %‘é—f is not in L2.

Remark. Note that in general, except for degenerate situations, #x is not equal
to L?(0(X)), i.e., Hx is not equal to the space of functions 1)(X) which are square
integrable functions (E(*(X)) < oo). This is easy to see even in the Gaussian
case. Specifically it is not too hard to show that all the random variables in Hx
are Gaussian, and this is clearly not the case for L%(a(X)) since X2(t) is not Gaus-

sian if X(t) is non-degenerate (it has a scaled chi-square distribution), but X?(t) is
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square-integrable. We know that the best estimate of a random variable Y based on
knowledge of X is given by E(Y|X) and in general this may not actually be in Hx.
However for the Gaussian case, it is and this is one of the attractive features of the

model of Gaussian processes.

Remark. One assumption in Cambanis/Masry (1983) is that the signal function

S satisfies that there exists square integrable function f such that

/ R(t,5)f(s)ds = S(2). (C — 20)
But this implies that
S() = 1; Ae(f, Pr)Px (C—21)

so that S = 3, akcﬂk where {f_XL;}k is in £2. This allows for the log-likelihood ratio
statistic based on knowing all of X and after ignoring terms not dependent on the

data X, to be given by

R ( [x@ 5o dt) . (C —22)
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Appendix D Properties of GSNRs

In this section we discuss in greater detail some optimality results mentioned in
subsections A.1 and A.2, and which are related to choosing resolutions maximizing
generalized signal-to-noise ratios (GSNR). These results were used to justify using the
criteria of finding resolutions which maximized the generalized signal-to-noise ration
(GSNR). Essentially we are quoting results from Cambanis/Masry (1983), hereafter
referred to as CM and also the norm used in this appendix refers to the norm in the
reproducing kernel Hilbert space as defined in the previous appendix. In fact in this
appendix, we will use all the notation which was set up in the previous appendix,
especially the notation for projections. In CM (1983), it was shown that under the
assumptions given in (al) through (a5), have for any set of resolutions represented

by L. that the corresponding probabiliy of detection is given by
Pp(L,) =2(I[PL, Sl — ®7'(1 — Pra)) (D-1)

where L,, is linear subspace generated in the reproducing kernel Hilbert space by the
functions {R(p;,-) : 1 < j < n}, ¢ is probability density function of standard real
Gaussian, i.e.,

1 2

&(z) = me"T z€R (D-2)

and @ is the cumulative distribution function for the above probability density func-

tion, 1.e.,

o(z2) = /_ oo é(=") d2’ z€R (D —3)

Note that this implies that the sequence of resolutions which maximize the GSNR
(=P S|l) also maximize the probability of detection Pp(£, ). Hence the justifi-
cation for focusing on the resolutions which maximize GSNR. Based on the above
result in (D-1), it is an straightforward exercise in calculus to show that if ﬁ: is an

optimal sequence for maximizing probability of detection or equivalently maximizing
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the GSNR, then

P, — P
15112 = [P, S

~ 2||5)% [|IS|I* — (1 = Pra)] . (D — 4)

This result can be used to help choose the constant K in the general loss function
given in subsection A.2. Also it can be used to derive alternative algorithms for
finding resolutions without directly trying to maximize GSNR. This was discussed in
some detail in subsection A.1l for the case where the noise process had independent
increments. Based on (D-4), it is straightforward to define the notion of a sequence £'111
being asymptotically optimal. Specifically let ,QZ be a sequence of optimal resolutions.

We say a sequence of vector of resolutions f\’,i is asymptotically optimal if and only if

15117 = 1Py: S11”
2 . 2 -+
IS11Z = 1Pp2SH

(D -5)

where L2 represents the linear space spanned by {R(p%,-) : 1 < j < n} and Ll
represents the linear space spanned by {R(p},:) : 1 < j < n}. For a further

discussion of these and related issues see CM (1983).
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